【題目】二次函數(shù)y=ax2+bx+4的圖象與x軸交于兩點A、B,與y軸交于點C,且A(﹣1,0)、B(4,0).
(1)求此二次函數(shù)的表達(dá)式;
(2)如圖1,拋物線的對稱軸m與x軸交于點E,CD⊥m,垂足為D,點F(﹣,0),動點N在線段DE上運動,連接CF、CN、FN,若以點C、D、N為頂點的三角形與△FEN相似,求點N的坐標(biāo);
(3)如圖2,點M在拋物線上,且點M的橫坐標(biāo)是1,將射線MA繞點M逆時針旋轉(zhuǎn)45°,交拋物線于點P,求點P的坐標(biāo).
【答案】(1)拋物線的解析式為y=﹣x2+3x+4;(2)點N的坐標(biāo)為(, )或(,2);(3)P的坐標(biāo)為(4,0)
【解析】分析: (1)先求得點C的坐標(biāo),設(shè)拋物線的解析式為y=a(x+1)(x4),將點C的坐標(biāo)代入求得a的值,從而得到拋物線的解析式;
(2)先求得拋物線的對稱軸,然后求得CD,EF的長,設(shè)點N的坐標(biāo)為(0,a)則ND=4a,NE=a,然后依據(jù)相似三角形的性質(zhì)列出關(guān)于a的方程,然后可求得a的值;
(3)過點A作AD∥y軸,過點M作DM∥x軸,交點為D,過點A作AE⊥AM,取AE=AM,作EF⊥x軸,垂足為F,連結(jié)EM交拋物線與點P.則△AME為等腰直角三角形,然后再求得點M的坐標(biāo),從而可得到MD=2,AD=6,然后證明∴△ADM≌△AFE,于是可得到點E的坐標(biāo),然后求得EM的解析式為y=2x+8,最后求得直線EM與拋物線的交點坐標(biāo)即可.
詳解:
(1)當(dāng)x=0時,y=4,∴C(0,4).
設(shè)拋物線的解析式為y=a(x+1)(x﹣4),將點C的坐標(biāo)代入得:﹣4a=4,解得a=﹣1,
∴拋物線的解析式為y=﹣x2+3x+4.
(2)x==.∴CD=,EF=.
設(shè)點N的坐標(biāo)為(,a)則ND=4﹣a,NE=a.
當(dāng)△CDN∽△FEN時, ,即,解得a=,
∴點N的坐標(biāo)為(, ).
當(dāng)△CDN∽△NEF時, ,即,解得:a=2.
∴點N的坐標(biāo)為(,2).
綜上所述,點N的坐標(biāo)為(, )或(,2).
(3)如圖所示:過點A作AD∥y軸,過點M作DM∥x軸,交點為D,過點A作AE⊥AM,取AE=AM,作EF⊥x軸,垂足為F,連結(jié)EM交拋物線與點P.
∵AM=AE,∠MAE=90°, ∴∠AMP=45°.
將x=1代入拋物線的解析式得:y=6, ∴點M的坐標(biāo)為(1,6). ∴MD=2,AD=6.
∵∠DAM+∠MAF=90°,∠MAF+∠FAE=90°, ∴∠DAM=∠FAE.
在△ADM和△AFE中, ,
∴△ADM≌△AFE.
∴EF=DM=2,AF=AD=6.
∴E(5,﹣2).
設(shè)EM的解析式為y=kx+b.
將點M和點E的坐標(biāo)代入得: ,
解得k=﹣2,b=8,
∴直線EM的解析式為y=﹣2x+8.
將y=﹣2x+8與y=﹣x2+3x+4聯(lián)立,解得:x=1或x=4.
將x=4代入y=﹣2x+8得:y=0.∴點P的坐標(biāo)為(4,0).
點睛: 本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了待定系數(shù)法求一次函數(shù)、二次函數(shù)的解析式,相似三角形的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的性質(zhì),通過作輔助線構(gòu)造等腰直角三角形、全等三角形求得點E的坐標(biāo)是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個正比例函數(shù)與一個一次函數(shù)的圖象交于點A(3,4),其中一次函數(shù)與y軸交于B點,且OA=OB.
(1)求這兩個函數(shù)的表達(dá)式;
(2)求△AOB的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,直線y=x+b與直線y=x交于點A(m,1).與y軸交于點B
(1)求m的值和點B的坐標(biāo);
(2)若點C在y軸上,且△ABC的面積是1,請直接寫出點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過重會嚴(yán)重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張平行四邊形紙片ABCD中,畫一個菱形,甲、乙兩位同學(xué)的畫法如下:甲:以B,A為圓心,AB長為半徑作弧,分別交BC,AD于點E,F,則四邊形ABEF為菱形;乙:作∠A,∠B的平分線AE,BF,分別交BC于點E,交AD于點F,則四邊形ABEF是菱形;關(guān)于甲、乙兩人的畫法,下列判斷正確的是( )
A. 僅甲正確B. 僅乙正確
C. 甲、乙均正確D. 甲、乙均錯誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“垃圾分類”越來越受到人們的關(guān)注,我市某中學(xué)對部分學(xué)生就“垃圾分類”知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有________人,條形統(tǒng)計圖中m的值為_______;
(2)扇形統(tǒng)計圖中“了解很少”部分所對應(yīng)扇形的圓心角的度數(shù)為________;
(3)若該校學(xué)生總數(shù)為1200人,試估計該校學(xué)生中對垃圾分類知識達(dá)到“非常了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,半徑OA⊥OB,過OA的中點C作FD∥OB交⊙O于D、F兩點,且CD=,以O為圓心,OC為半徑作,交OB于E點.則圖中陰影部分的面積為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸、軸于點,直線與直線交于點,點為軸上一動點.
(1)求點的坐標(biāo);
(2)當(dāng)的值最小時,求此時點的坐標(biāo),并求的最小值;
(3)在平面直角坐標(biāo)系中是否存在點,使以點為頂點的四邊形是平行四邊形,若存在,求出點的坐標(biāo);若不存在,請說出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(0,4),B(4,0),C(10,0),點P在直線AB上,且∠OPC=90,則點P的坐標(biāo)為________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com