【題目】如圖,一艘漁船位于海洋觀測站P的北偏東60°方向,漁船在A處與海洋觀測站P的距離為60海里,它沿正南方向航行一段時間后,到達(dá)位于海洋觀測站P的南偏東45°方向上的B處.求此時漁船所在的B處與海洋觀測站P的距離(結(jié)果保留根號).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“全國愛眼日”這天,某校課題小組為了了解本校名學(xué)生的視力情況,隨機(jī)抽查了部分學(xué)生的視力,并將調(diào)查的數(shù)據(jù)整理后繪制成如下的頻率分布表和頻數(shù)分布直方圖(均不完整).
組別 | 視力 | 頻率 |
第組 | ||
第組 | ||
第組 | ||
第組 | ||
第組 |
根據(jù)以上信息解答下列問題:
填空:______ _,并將頻數(shù)分布直方圖補(bǔ)充完整;
若將統(tǒng)計(jì)結(jié)果繪制成扇形統(tǒng)計(jì)圖,則第組所在扇形的圓心角度數(shù)為 ;
課題小組調(diào)查發(fā)現(xiàn),每組中過度使用電子產(chǎn)品而造成視力下降的學(xué)生的比重如下表:
視力 | |||||
比重 |
根據(jù)調(diào)查結(jié)果估計(jì)該校有多少名學(xué)生的視力下降是由于過度使用電子產(chǎn)品.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn)和點(diǎn),并經(jīng)過點(diǎn),拋物線的頂點(diǎn)為.將拋物線平移后得到頂點(diǎn)為且對稱軸為直線的拋物線.
(1)求拋物線的表達(dá)式;
(2)在直線上是否存在點(diǎn),使為等腰三角形?若存在,請求出所有點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=-1的頂點(diǎn)為A,直線l過點(diǎn)P(0,m)且平行于x軸,與拋物線交于點(diǎn)B和點(diǎn)C.若AB=AC,∠BAC=90°,則m=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,D、E是AB、BC上兩點(diǎn),將△ABC沿DE折疊,使點(diǎn)B落在AC邊上點(diǎn)F處,并且DF∥BC,若CF=3,BC=9,則AB的長是( )
A. B. 15C. D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)若此方程的一個根為1,求的值;
(2)求證:不論取何實(shí)數(shù),此方程都有兩個不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在每個小正方形的邊長為1的網(wǎng)格中,等腰直角三角形與的頂點(diǎn)都在網(wǎng)格點(diǎn)上,點(diǎn)、分別為線段、上的動點(diǎn),且.
(Ⅰ)如圖①,當(dāng)時,計(jì)算的值等于__;
(Ⅱ)當(dāng)取得最小值時,請?jiān)谌鐖D②所示的網(wǎng)格中,用無刻度的直尺,畫出線段和,并簡要說明點(diǎn)和點(diǎn)的位置是如何找到的(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A、B均為格點(diǎn).
(Ⅰ)AB的長等于_____.
(Ⅱ)若點(diǎn)C是以AB為底邊的等腰直角三角形的頂點(diǎn),點(diǎn)D在邊AC上,且滿足S△ABD=S△ABC.請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出線段BD,并簡要說明點(diǎn)D的位置是如何找到的(不要求證明)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AD∥BC,∠A=90°,AB=AD=8cm,CD=10cm,點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動,速度為1cm/s;同時,點(diǎn)Q從點(diǎn)D出發(fā),沿DC方向勻速運(yùn)動,速度為lcm/s.連接PQ,設(shè)運(yùn)動時間為t(s)(0<t<8).解答下列問題:
(1)當(dāng)t為何值時,PQ∥AD?
(2)設(shè)四邊形APQD的面積為y(cm2),求y與t的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使S四邊形APQO:S四邊形BCQP=17:27?若存在,求出t的值,并求此時PQ的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com