【題目】(閱讀材料)“九宮圖”源于我國(guó)古代夏禹時(shí)期的“洛書”圖1所示,是世界上最早的矩陣,又稱“幻方”,用今天的數(shù)學(xué)符號(hào)翻譯出來,“洛書”就是一個(gè)三階“幻方”圖2所示.
(規(guī)律總結(jié))觀察圖1、圖2,根據(jù)“九宮圖”中各數(shù)字之間的關(guān)系,我們可以總結(jié)出“幻方”需要滿足的條件是______;若圖3,是一個(gè)“幻方”,則______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料: 如圖1,圓的概念:在平面內(nèi),線段PA繞它固定的一個(gè)端點(diǎn)P旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A所形成的圖形叫做圓.就是說,到某個(gè)定點(diǎn)等于定長(zhǎng)的所有點(diǎn)在同一個(gè)圓上,圓心在P(a,b),半徑為r的圓的方程可以寫為:(x﹣a)2+(y﹣b)2=r2 , 如:圓心在P(2,﹣1),半徑為5的圓方程為:(x﹣2)2+(y+1)2=25
(1)填空: ①以A(3,0)為圓心,1為半徑的圓的方程為;
②以B(﹣1,﹣2)為圓心, 為半徑的圓的方程為 .
(2)根據(jù)以上材料解決下列問題: 如圖2,以B(﹣6,0)為圓心的圓與y軸相切于原點(diǎn),C是⊙B上一點(diǎn),連接OC,作BD⊥OC垂足為D,延長(zhǎng)BD交y軸于點(diǎn)E,已知sin∠AOC= .
①連接EC,證明EC是⊙B的切線;
②在BE上是否存在一點(diǎn)P,使PB=PC=PE=PO?若存在,求P點(diǎn)坐標(biāo),并寫出以P為圓心,以PB為半徑的⊙P的方程;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,E是AD上的一點(diǎn),F是AB上的一點(diǎn),EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周長(zhǎng)為32cm,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△AOB中,將扇形COD按圖1擺放,使扇形的半徑OC、OD分別與OA、OB重合,OA=OB=2,OC=OD=1,固定等邊△AOB不動(dòng),讓扇形COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),線段AC、BD也隨之變化,設(shè)旋轉(zhuǎn)角為α.(0<α≤360°)
(1)當(dāng)OC∥AB時(shí),旋轉(zhuǎn)角α=度;
(2)線段AC與BD有何數(shù)量關(guān)系,請(qǐng)僅就圖2給出證明.
(3)當(dāng)A、C、D三點(diǎn)共線時(shí),求BD的長(zhǎng).
(4)P是線段AB上任意一點(diǎn),在扇形COD的旋轉(zhuǎn)過程中,請(qǐng)直接寫出線段PC的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在日歷中任意圈出一個(gè)3×3的正方形,則里面九個(gè)數(shù)不滿足的關(guān)系式是( 。
A. a1+a2+a3+a7+a8+a9=2(a4+a5+a6)
B. a1+a4+a7+a3+a6+a9=2(a2+a5+a8)
C. a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5
D. (a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把正方體的六個(gè)面分別涂上六種不同顏色,并畫上朵數(shù)不等的花,各面上的顏色與花的朵數(shù)情況見下表:
現(xiàn)將上述大小相同,顏色、花朵分布也完全相同的四個(gè)正方體拼成一個(gè)水平放置的長(zhǎng)方體,如圖所示.問長(zhǎng)方體的下底面共有多少朵花?
顏色 | 紅 | 黃 | 藍(lán) | 白 | 紫 | 綠 |
花的朵數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD折疊使A,C重合,折痕交BC于E,交AD于F,連接AE,CF,AC.
(1)求證:四邊形AECF為菱形;
(2)若AB=4,BC=8,①求菱形AECF的邊長(zhǎng);②求折痕EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點(diǎn)C作CF平行于BA交PQ于點(diǎn)F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一種公益叫“光盤”.所謂“光盤”,就是吃光你盤子中的食物,杜絕“舌尖上的浪費(fèi)”.某校九年級(jí)開展“光盤行動(dòng)”宣傳活動(dòng),根據(jù)各班級(jí)參加該活動(dòng)的總?cè)舜握劬統(tǒng)計(jì)圖,下列說法正確的是( 。
A. 極差是40 B. 中位數(shù)是58 C. 平均數(shù)大于58 D. 眾數(shù)是5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com