閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵≥0,∴≥0,
∴≥,只有當(dāng)a=b時(shí),等號(hào)成立.
結(jié)論:在≥(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時(shí),a+b有最小值.
(1)根據(jù)上述內(nèi)容,回答下列問(wèn)題:現(xiàn)要制作一個(gè)長(zhǎng)方形(或正方形),使鏡框四周?chē)傻拿娣e為4,請(qǐng)?jiān)O(shè)計(jì)出一種方案,使鏡框的周長(zhǎng)最小。
設(shè)鏡框的一邊長(zhǎng)為m(m>0),另一邊的為,考慮何時(shí)時(shí)周長(zhǎng)最小。
∵m>0, (定值),由以上結(jié)論可得:
只有當(dāng)m= 時(shí),鏡框周長(zhǎng)有最小值是 ;
(2)探索應(yīng)用:如圖,已知A(-3,0),B(0,-4),P為雙曲線(x>0)上的任意一點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說(shuō)明此時(shí)△OAB與△OCD的關(guān)系.
(1)2,4
(2)設(shè)P()
可得:
因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012082812230925674122/SYS201208281224051174272211_DA.files/image003.png">(為定值)
所以:
此時(shí):,即:,得:
當(dāng):,S最小為24,
此時(shí),P(3,4),
OC=OA,OD=OB,∠COD=∠AOB
△OAB與△OCD全等。
【解析】(1)根據(jù)式子特殊性可以分別求出m的值以及分式的最值;
(2)設(shè)P(),把四邊形ABCD分割成四個(gè)小三角形,用含x的代數(shù)式表示出四邊形ABCD的面積,根據(jù)式子特殊性可以分別求出代數(shù)式的最小值,并可得到點(diǎn)P的坐標(biāo),從而判斷出△OAB與△OCD的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
a |
b |
ab |
ab |
ab |
p |
p |
1 |
m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
a |
b |
ab |
ab |
ab |
p |
p |
1 |
m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
a |
b |
ab |
ab |
ab |
p |
p |
4 |
x |
6 |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
a |
b |
ab |
ab |
P |
P |
ab |
1 |
m |
12 |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
a |
b |
ab |
ab |
ab |
p |
p |
1 |
m |
12 |
x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com