【題目】如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.
(1)求證:OF∥BC;
(2)求證:△AFO≌△CEB;
(3)若EB=5cm,CD=cm,設(shè)OE=x,求x值及陰影部分的面積.
【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析;(3);陰影部分的面積是:cm2.
【解析】
(1)根據(jù)直徑所對(duì)的圓周角是直角,以及垂直于同一直線的兩直線平行即可證得;
(2)根據(jù)垂徑定理以及等弧所對(duì)的圓周角相等,即可證得:△AFO和△CEB的兩個(gè)角相等,從而證得兩個(gè)三角形全等;
(3)根據(jù)勾股定理求得x的值,然后根據(jù)陰影部分的面積=扇形COD的面積-△COD的面積即可求解.
(1)證明:∵AB為⊙O的直徑,
∴AC⊥BC
又∵OF⊥AC
∴OF∥BC
(2)證明:∵AB⊥CD
∴
∴∠CAB=∠BCD
又∵∠AFO=∠CEB=90°,OF=BE,
∴△AFO≌△CEB
(3)連接DO.設(shè)OE=x,
∵AB⊥CD
∴CE=CD=5cm.
在△OCB中,OC=OB=x+5(cm),
根據(jù)勾股定理可得:(x+5)2=(5)2+x2
解得:x=5,即OE=5cm,
∴tan∠COE=,
∴∠COE=60°
∴∠COD=120°,
∴扇形COD的面積是:cm2
△COD的面積是:CDOE=×10×5=25cm2
∴陰影部分的面積是:()cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書(shū)畫(huà)作品,楊老師從全校36個(gè)班中隨機(jī)抽取了4 個(gè)班 (用A,B,C,D表示),對(duì)征集到的作品的數(shù)量進(jìn)行了統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.請(qǐng) 根據(jù)相關(guān)信息,回答下列問(wèn)題:
(1)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;并估計(jì)全校共征集了_____件作品;
(2)如果全校征集的作品中有4件獲得一等獎(jiǎng),其中有3名作者是男生,1名作者是女生,現(xiàn)要在獲得一等獎(jiǎng)的作者中選取兩人參加表彰座談會(huì),請(qǐng)你用列表或樹(shù)狀圖的方法,求選取的兩名學(xué)生恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賓館有若干間標(biāo)準(zhǔn)房,當(dāng)標(biāo)準(zhǔn)房的價(jià)格為200元時(shí),每天入住的房間數(shù)為60間,經(jīng)市場(chǎng)調(diào)查表明,該賓館每間標(biāo)準(zhǔn)房的價(jià)格在170~240元之間(含170元,240元)浮動(dòng)時(shí),每天入住的房間數(shù)(間)與每間標(biāo)準(zhǔn)房的價(jià)格(元)的數(shù)據(jù)如下表:
(元) | … | 190 | 200 | 210 | 220 | … |
(間) | … | 65 | 60 | 55 | 50 | … |
(1)根據(jù)所給數(shù)據(jù)在坐標(biāo)系中描出相應(yīng)的點(diǎn),并畫(huà)出圖象.
(2)求關(guān)于的函數(shù)表達(dá)式、并寫(xiě)出自變量的取值范圍.
(3)設(shè)客房的日營(yíng)業(yè)額為(元).若不考慮其他因素,問(wèn)賓館標(biāo)準(zhǔn)房的價(jià)格定為多少元時(shí).客房的日營(yíng)業(yè)額最大?最大為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(2,0),⊙P與x軸相交于原點(diǎn)O和點(diǎn)A,又B、C兩點(diǎn)的坐標(biāo)分別為(0,b),(﹣1,0).
(1)當(dāng)b=2時(shí),求經(jīng)過(guò)B、C兩點(diǎn)的直線解析式;
(2)當(dāng)B點(diǎn)在y軸上運(yùn)動(dòng)時(shí),直線BC與⊙P位置關(guān)系如何?并求出相應(yīng)位置b的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】傳統(tǒng)節(jié)日“端午節(jié)”的早晨,小文媽媽為小文準(zhǔn)備了四個(gè)粽子作早點(diǎn):一個(gè)棗餡粽,一個(gè)肉餡粽,兩個(gè)花生餡粽,四個(gè)粽子除內(nèi)部餡料不同外,其它一切均相同.
(1)小文吃前兩個(gè)粽子剛好都是花生餡粽的概率為 ;
(2)若媽媽在早點(diǎn)中給小文再增加一個(gè)花生餡的粽子,則小文吃前兩個(gè)粽子都是花生餡粽的可能性是否會(huì)增大?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在綜合實(shí)踐課上,小聰所在小組要測(cè)量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點(diǎn)A處用測(cè)角儀測(cè)得河對(duì)岸小樹(shù)C位于東北方向,然后沿河岸走了30米,到達(dá)B處,測(cè)得河對(duì)岸電線桿D位于北偏東30°方向,此時(shí),其他同學(xué)測(cè)得CD=10米.請(qǐng)根據(jù)這些數(shù)據(jù)求出河的寬度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分8分)一個(gè)不透明的口袋中裝有2個(gè)紅球(記為紅球1、紅球2)、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.
(1)從中任意摸出1個(gè)球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出1個(gè)球,再?gòu)挠嘞碌?個(gè)球中任意摸出1個(gè)球,請(qǐng)用列舉法(畫(huà)樹(shù)狀圖或列表)求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點(diǎn)O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過(guò)邊BC的中點(diǎn)D,并與邊AC相交于另一點(diǎn)F.
(1)求證:BD是⊙O的切線.
(2)若AB=,E是半圓上一動(dòng)點(diǎn),連接AE,AD,DE.
填空:
①當(dāng)的長(zhǎng)度是____________時(shí),四邊形ABDE是菱形;
②當(dāng)的長(zhǎng)度是____________時(shí),△ADE是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,點(diǎn)E是BC的中點(diǎn),點(diǎn)P為對(duì)角線BD上的動(dòng)點(diǎn),設(shè)BP=t(t>0),作PH⊥BC于點(diǎn)H,連接EP并延長(zhǎng)至點(diǎn)F,使得PF=PE,作點(diǎn)F關(guān)于BD的對(duì)稱(chēng)點(diǎn)G,FG交BD于點(diǎn)Q,連接GH,GE.
(1)求證:EG∥PQ;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到對(duì)角線BD中點(diǎn)時(shí),求△EFG的周長(zhǎng);
(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,△GEH是否可以為等腰三角形?若可以,求出t的值;若不可以,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com