【題目】如圖,在△ABC中,∠BAC的平分線與BC的中垂線DE交于點E,過點E作AC邊的垂線,垂足為N,過點E作AB延長線的垂線,垂足為M.
(1)求證:BM=CN;
(2)若,AB=2,AC=8,求BM的長.
【答案】(1)證明見解析;(2)3.
【解析】
(1)因為ED是BC的垂直平分線,那么BE=CE,而AE是∠BAC的平分線,EM⊥AB,EN⊥AC,根據(jù)角平分線的性質可得EM=EN,再根據(jù)HL可判定Rt△BME≌Rt△CNE,從而有BM=CN.
(2)同(1)中方法證明Rt△AME≌Rt△ANE(HL),可得:AM=AN,又因為AM= AB+BM, AN= AC-CN,即可解答.
證明:連接BE,CE,如圖,
∴DE是BC的垂直平分線,
∴BE=CE,
∵AE是∠BAC的平分線,EM⊥AB,EN⊥AC,
∴EM=EN,
在Rt△BME和Rt△CNE中,
∴Rt△BME≌Rt△CNE(HL),
∴BM=CN
(2)由(1)得:EM=EN,
在Rt△AME和Rt△ANE中,
∴Rt△AME≌Rt△ANE(HL),
∴AM=AN,又∵AM= AB+BM, AN= AC-CN
∴AB+BM=AC-CN
∴2+ BM=8-CN, 又∵BM=CN
∴BM=CN =3
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形中, ,延長至點,連接,且交于點,和的角平分線相交于點.
(1)求證:①;②;
(2)若,,求的度數(shù);
(3)若,請你探究和之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若點P從點A出發(fā),以每秒1cm的速度沿折線A﹣B﹣C﹣A運動,設運動時間為t(t>0)秒.
(1)AC= cm;
(2)若點P恰好在AB的垂直平分線上,求此時t的值;
(3)在運動過程中,當t為何值時,△ACP是以AC為腰的等腰三角形(直接寫出結果)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形是菱形,以點為坐標原點,所在直線為軸建立平面直角坐標系.若點的坐標為,直線與軸相交于點,連接.
(1)求菱形的邊長;
(2)證明為直角三角形;
(3)直線上是否存在一點使得的面積與的面積相等?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與函數(shù)y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一枚質地均勻的正二十面體形狀的骰子,其中的1個面標有“1”,2個面標有“2”,3個面標有“3”,4個面標有“4”,5個面標有“5”,其余的面標有“6”.將這枚骰子擲出后,求:
(1)“6”朝上的概率是多少?
(2)哪個數(shù)字朝上的概率最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示(1<x=h<2,0<xA<1),下列結論:① 2a+b>0;② abc<0;③ 若OC=2OA,則2b-ac = 4;④ 3a﹣c<0,其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某百貨商店服裝柜在銷售中發(fā)現(xiàn):某品牌童裝每天可售出20件,每件盈利40元,經(jīng)市場調查發(fā)現(xiàn),在進貨價不變的情況下,若每件童裝每降價1元,日銷售量將增加2件.
(1)當每件童裝降價多少元時,一天的盈利最多?
(2)若商場要求一天的盈利為1200元,同時又使顧客得到實惠,每件童裝降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)(﹣4)2007·(0.25)2018
(2)3(2﹣y)2﹣4(y+5)
(3)(a+2b)(a﹣2b)﹣b(a﹣8b)
(4)(a﹣b)(a2+ab+b2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com