【題目】如圖,已知在△ABC中,∠BAC>90°,點(diǎn)D為BC的中點(diǎn),點(diǎn)E在AC上,將△CDE沿DE折疊,使得點(diǎn)C恰好落在BA的延長(zhǎng)線上的點(diǎn)F處,連結(jié)AD,則下列結(jié)論不一定正確的是( 。
A. AE=EF B. AB=2DE
C. △ADF和△ADE的面積相等 D. △ADE和△FDE的面積相等
【答案】C
【解析】先判斷出△BFC是直角三角形,再利用三角形的外角判斷出A正確,進(jìn)而判斷出AE=CE,得出CE是△ABC的中位線判斷出B正確,利用等式的性質(zhì)判斷出D正確.
如圖,連接CF,
∵點(diǎn)D是BC中點(diǎn),
∴BD=CD,
由折疊知,∠ACB=∠DFE,CD=DF,
∴BD=CD=DF,
∴△BFC是直角三角形,
∴∠BFC=90°,
∵BD=DF,
∴∠B=∠BFD,
∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,
∴AE=EF,故A正確,
由折疊知,EF=CE,
∴AE=CE,
∵BD=CD,
∴DE是△ABC的中位線,
∴AB=2DE,故B正確,
∵AE=CE,
∴S△ADE=S△CDE,
由折疊知,△CDE≌△△FDE,
∴S△CDE=S△FDE,
∴S△ADE=S△FDE,故D正確,
∴C選項(xiàng)不正確,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+b與雙曲線y=(k為常數(shù),k≠0)在第一象限內(nèi)交于點(diǎn)A(1,2),且與x軸、y軸分別交于B,C兩點(diǎn).
(1)求直線和雙曲線的解析式;
(2)點(diǎn)P在x軸上,且△BCP的面積等于2,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示,A,B,C三點(diǎn)在格點(diǎn)上.
(1)作出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo);
(2)作出△ABC關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2,并寫(xiě)出點(diǎn)A2、B2、C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)P在AB上從A向B運(yùn)動(dòng),連接DP交AC于點(diǎn)Q.
(1)試證明:無(wú)論點(diǎn)P運(yùn)動(dòng)到AB上何處時(shí),都有△ADQ≌△ABQ;
(2)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)到什么位置時(shí),△ADQ的面積是正方形ABCD面積的;
(3)若點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B,再繼續(xù)在BC上運(yùn)動(dòng)到點(diǎn)C,在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△ADQ恰為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)給出的數(shù)軸及已知條件,解答下面的問(wèn)題:
(1)已知點(diǎn)A,B,C表示的數(shù)分別為1,,-3.觀察數(shù)軸,與點(diǎn)A的距離為3的點(diǎn)表示的數(shù)是 ,A,B兩點(diǎn)之間的距離為 。
(2)數(shù)軸上,點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn)表示的數(shù)是 ;
(3)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則與B點(diǎn)重合的點(diǎn)表示的數(shù)是 ;若此數(shù)軸上M,N兩點(diǎn)之間的距離為2019(M在N的左側(cè)),且當(dāng)A點(diǎn)與C點(diǎn)重合時(shí),M點(diǎn)與N點(diǎn)也恰好重合,則點(diǎn)M表示的數(shù)是 ,點(diǎn)N表示的數(shù)是 。
(4)若數(shù)軸上P,Q兩點(diǎn)間的距離為a(P在Q的左側(cè)),表示數(shù)b的點(diǎn)到P,Q的兩點(diǎn)的距離相等,將數(shù)軸折疊,當(dāng)P點(diǎn)與Q點(diǎn)重合時(shí),點(diǎn)P表示的數(shù)是 ,點(diǎn)Q表示的數(shù)是 (用含a,b的式子表示這兩個(gè)數(shù))。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】前不久在臺(tái)灣抗震救災(zāi)中,某地將甲、乙兩個(gè)倉(cāng)庫(kù)的糧食全部轉(zhuǎn)移到A、B兩個(gè)倉(cāng)庫(kù).甲庫(kù)有糧食100噸,乙?guī)煊屑Z食80噸,而A庫(kù)的容量為70噸,B庫(kù)的容量為110噸.從甲、乙兩庫(kù)到A,B兩庫(kù)的路程和運(yùn)費(fèi)如下表:
路程(km) | 運(yùn)費(fèi)(元/噸km) | |||
甲庫(kù) | 乙?guī)?/span> | 甲庫(kù) | 乙?guī)?/span> | |
A庫(kù) | 20 | 15 | 12 | 12 |
B庫(kù) | 25 | 20 | 10 | 8 |
(1)若甲庫(kù)運(yùn)往A庫(kù)糧食x噸,請(qǐng)寫(xiě)出將糧食運(yùn)往A、B兩庫(kù)的總運(yùn)費(fèi)y(元)與x(噸)函數(shù)關(guān)系式.
(2)當(dāng)甲、乙兩庫(kù)各運(yùn)往A、B兩庫(kù)多少噸糧食時(shí),總運(yùn)費(fèi)最省,最省的總運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:
(1)∠BOC的度數(shù);
(2)BE+CG的長(zhǎng);
(3)⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AC∥BD,連結(jié)AB,直線AC、BD及線段AB把平面分成①、②、③、④四個(gè)部分,規(guī)定:線上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連結(jié)PA、PB,構(gòu)成∠PAC、∠APB、∠PBD三個(gè)角.(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°)
(1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),有∠APB=∠PAC+∠PBD,請(qǐng)說(shuō)明理由;
(2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),∠APB=∠PAC+∠PBD是否成立?若不成立,試寫(xiě)出∠PAC、∠APB、∠PBD三個(gè)角的等量關(guān)系(無(wú)需說(shuō)明理由);
(3)當(dāng)動(dòng)點(diǎn)P在第③部分時(shí),探究∠PAC、∠APB、∠PBD之間的關(guān)系,寫(xiě)出你發(fā)現(xiàn)的一個(gè)結(jié)論并加以說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作直線OC,已知∠AOC≠90°,射線OD平分∠AOC,射線OE平分∠BOC,射線OF平分∠DOE.
(1)求∠DOE和∠DOF的度數(shù);
(2)若∠DOC=3∠COF,求∠AOC的度數(shù);
(3)求∠BOF+∠DOC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com