【題目】某汽車清洗店,清洗一輛汽車定價(jià)20元時(shí)每天能清洗45輛,定價(jià)25元時(shí)每天能清洗30輛,假設(shè)清洗汽車輛數(shù)(輛)與定價(jià)(元)(取整數(shù))是一次函數(shù)關(guān)系(清洗每輛汽車成本忽略不計(jì)).
(1)求與之間的函數(shù)表達(dá)式;
(2)若清洗一輛汽車定價(jià)不低于15元且不超過50元,且該汽車清洗店每天需支付電費(fèi)、水費(fèi)和員工工資共計(jì)200元,問:定價(jià)為多少時(shí),該汽車清洗店每天獲利最大?最大獲利多少?
【答案】(1);(2)當(dāng)定價(jià)為17元或18元,汽車清洗店每天獲利最大,最大值為718元
【解析】
(1)利用待定系數(shù)法即可 求出y與x的函數(shù)表達(dá)式;
(2)列出利潤(rùn)W關(guān)于定價(jià)x的函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)及自變量x的范圍即可求出最大利潤(rùn).
解:(1)依題意,設(shè)與的函數(shù)關(guān)系式為
則:,解得:
即與的函數(shù)關(guān)系式為:;
(2)設(shè)利潤(rùn)為元,
則由題意知:
∵
∴拋物線開口向下
∵,且是整數(shù)
∴當(dāng)或18時(shí),(元)
即當(dāng)定價(jià)為17元或18元,汽車清洗店每天獲利最大,最大值為718元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:在圖(1)(2)所示拋物線中,拋物線與軸交于、,與軸交于,點(diǎn)是拋物線的頂點(diǎn),過平行于軸的直線是它的對(duì)稱軸,點(diǎn)在對(duì)稱軸上運(yùn)動(dòng)。僅用無刻度的直尺畫線的方法,按要求完成下列作圖:
(1)在圖①中作出點(diǎn),使線段最;
(2)在圖②中作出點(diǎn),使線段最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB=6,BC=10,AE=2,連接BE、CE,線段CD上有一點(diǎn)H,將△EDH沿直線EH折疊,折疊后點(diǎn)D落在EC上的點(diǎn)D′處,若D′N⊥AD于點(diǎn)N,與EH交于點(diǎn)M.則①△D′MH與△CBE都是等腰三角形;②∠BEH為直角;③DH長(zhǎng)度為,④;以上說法正確的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面坐標(biāo)系中,第1個(gè)正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)D的坐標(biāo)為(0,4),延長(zhǎng)CB交x軸于點(diǎn)A1,作第2個(gè)正方形A1B1C1C,延長(zhǎng)C1B1交x軸于點(diǎn)A2;作第3個(gè)正方形A2B2C2C1,…按這樣的規(guī)律進(jìn)行下去,第5個(gè)正方形的邊長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸、軸分別交于、兩點(diǎn),以為邊長(zhǎng)在第一象限內(nèi)作正方形,若反比例函數(shù)()的圖象經(jīng)過頂點(diǎn).
(1)試確定的值;
(2)若正方形向左平移個(gè)單位后,頂點(diǎn)恰好落在反比例函數(shù)的圖象上,試確定的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要修一個(gè)圓形噴水池,在池中心豎直安裝一根水管,水管的頂端安一個(gè)噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達(dá)到最高,高度為3m,水柱落地處離池中心3m,水管應(yīng)多長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格銷售,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量箱與銷售價(jià)元/箱之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤(rùn)w(元)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在Rt△ABC中,∠A=90°,=1,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接 CD.
(1)①求的值;②求∠ACD的度數(shù).
(2)拓展探究
如圖 2,在Rt△ABC中,∠A=90°,=k.點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD,請(qǐng)判斷∠ACD與∠B 的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說明理由.
(3)解決問題
如圖 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若 PA=5,請(qǐng)直接寫出CD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com