【題目】(根據(jù)市教委提出的學(xué)生每天體育鍛煉不少于1小時的要求,為確保陽光體育運動時間得到落實,某校對九年級學(xué)生每天參加體育鍛煉的時間作了一次抽樣調(diào)查,其中部分結(jié)果記錄如下:
時間分組(小時) | 頻數(shù)(人數(shù)) | 頻率 |
0≤t<0.5 | 10 | 0.2 |
0.5≤t<1 | 0.4 | |
1≤t<1.5 | 10 | 0.2 |
1.5≤t<2 | 0.1 | |
2≤t<2.5 | 5 | |
合計 | 1 |
請你將頻數(shù)分布表和頻數(shù)分布直方圖補充完整.
【答案】圖形見解析
【解析】
試題由所有頻率之和為1求出未知的那個小組的頻率,然后根據(jù)表格中已知的一組數(shù)據(jù)可以求出抽樣調(diào)查的總?cè)藬?shù),然后分別乘以各個所求小組的頻率,就可以求出所有未知小組的頻數(shù),最后即可補全頻數(shù)分布直方圖.
試題解析:依題意得2≤t<2.5小組的頻率為:1﹣0.2﹣0.4﹣0.2﹣0.1=0.1,
根據(jù) 0≤t<0.5這組數(shù)據(jù)可得抽樣調(diào)查的總?cè)藬?shù)為10÷0.2=50人,
∴50×0.4=20人,
50×0.1=5人,
∴頻數(shù)分布表和頻數(shù)分布直方圖補充如圖所示:
時間分組(小時) | 頻數(shù)(人數(shù)) | 頻率 |
| 10 | 0.2 |
| 20 | 0.4 |
| 10 | 0.2 |
1.5≤t<2 | 5 | 0.1 |
2≤t<2.5 | 5 | 0.1 |
合計 | 50 | 1 |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,CD⊥AB于D.
(1)若∠A=38,求∠DCB的度數(shù);
(2)若AB=5,CD=3,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y= (m≠0)的圖象有公共點A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B、C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象回答,x在什么范圍內(nèi),一次函數(shù)的值大于反比例函數(shù)的值;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從一個建筑物的A處測得對面樓BC的頂部B的仰角為32°,底部C的俯角為45°,觀測點與樓的水平距離AD為31m,樓BC的高度大約為多少?(結(jié)果取整數(shù)).(參考數(shù)據(jù):sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD(四個邊相等,四個角為直角)中,E,F(xiàn)分別為AD,BC的中點,P為對角線BD上的一個動點,則下列線段的長等于AP+EP最小值的是( )
A. AB B. DE C. AF D. BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知C是∠AOB的平分線上一點,點P,P′分別在邊OA,OB上,如果要得到OP=OP′,需要添加以下條件中的某一個,那么所有可能結(jié)果的序號為________.
①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,某學(xué)校計劃用彩色的地面磚鋪設(shè)教學(xué)樓門前一塊矩形操場ABCD的地面.已知這個矩形操場地面的長為100m,寬為80m,圖案設(shè)計如圖所示:操場的四角為小正方形,陰影部分為四個矩形,四個矩形的寬都為小正方形的邊長,在實際鋪設(shè)的過程總,陰影部分鋪紅色地面磚,其余部分鋪灰色地面磚.
(1)如果操場上鋪灰色地面磚的面積是鋪紅色地面磚面積的4倍,那么操場四角的每個小正方形邊長是多少米?
(2)如果灰色地面磚的價格為每平方米30元,紅色地面磚的價格為每平方米20元,學(xué)校現(xiàn)有15萬元資金,問這些資金是否能購買所需的全部地面磚?如果能購買所學(xué)的全部地面磚,則剩余資金是多少元?如果不能購買所需的全部地面磚,教育局還應(yīng)該至少給學(xué)校解決多少資金?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)的頂點為B(2,1),且過點A(0,2),直線y=x與拋物線交于點D,E(點E在對稱軸的右側(cè)),拋物線的對稱軸交直線y=x于點C,交x軸于點G,EF⊥x軸,垂足為F,點P在拋物線上,且位于對稱軸的右側(cè),PQ⊥x軸,垂足為點Q,△PCQ為等邊三角形
(1)求該拋物線的解析式;
(2)求點P的坐標;
(3)求證:CE=EF;
(4)連接PE,在x軸上點Q的右側(cè)是否存在一點M,使△CQM與△CPE全等?若存在,試求出點M的坐標;若不存在,請說明理由.[注:3+2 =( +1)2].
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com