【題目】如圖,在平面直角坐標(biāo)系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運(yùn)動,且始終滿足∠BPC=90°,則a的最大值是______

【答案】6

【解析】

首先證明AB=AC=a,根據(jù)條件可知PA=AB=AC=a,求出⊙D上到點A的最大距離即可解決問題.

A(1,0),B(1﹣a,0),C(1+a,0)(a>0),

AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,

AB=AC,

∵∠BPC=90°,

PA=AB=AC=a,

如圖延長AD交⊙DP′,此時AP′最大,

A(1,0),D(4,4),

AD=5,

AP′=5+1=6,

a的最大值為6.

故答案為6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個邊長為 1 的正方形,經(jīng)過一次生長后,在他的左右肩上生出兩個小正方形, 其中,三個正方形圍成的三角形是直角三角形,再經(jīng)過一次生長后,變成了下圖,如果繼續(xù)生長下去,它將變得枝繁葉茂,請你算出生長 2019 次后形成的圖形中所有的正方形的面積和是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系中的位置如圖所示,其中每個小正方形的邊長為1個單位長度.

1)畫出ABC關(guān)于x軸對稱的圖形A1B1C1,

2)寫出點A的對應(yīng)點A1的坐標(biāo);

3)將ABC的橫、縱坐標(biāo)分別乘以-1,畫出對應(yīng)的圖形A2B2C2;若Pa,b)為ABC邊上一點,則在A2B2C2中,點P對應(yīng)的點Q的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一多邊形草坪,在市政建設(shè)設(shè)計圖紙上的面積為300cm2,其中一條邊的長度為5cm.經(jīng)測量,這條邊的實際長度為15m,則這塊草坪的實際面積是( 。

A. 100m2 B. 270m2 C. 2700m2 D. 90000m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動課上,老師準(zhǔn)備了若干個如圖1的三種紙片,A種紙片是邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片是長為a、寬為b的長方形。用A種紙片張,B種紙片一張,C種紙片兩張可拼成如圖2的大正方形.

1)請用兩種不同的方法求圖2大正方形的面積(答案直接填寫到題中橫線上);

方法1____________;方法2_____________

2)觀察圖2,請你直接寫出下列三個代數(shù)式: (a+b), a+b,ab之間的等量關(guān)系_____________;

3)類似的,請你用圖1中的三種紙片拼一個圖形驗證:(a+b)(a+2b)=a+3ab+2b

4)根據(jù)(2)題中的等量關(guān)系,解決如下問題:

①已知:a+b=6, a+b=14,求ab的值;

②已知(x2018)+(x2020)=34,(x2019)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k<0)與反比例函數(shù)的圖象相交于A、B兩點,一次函數(shù)的圖象與y軸相交于點C,已知點A(4,1)

(1)求反比例函數(shù)的解析式;

(2)連接OB(O是坐標(biāo)原點),若△BOC的面積為3,求該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+m的圖象交y軸于點D,且它與正比例函數(shù)的圖象交于點A2n),設(shè)x軸上有一點P,過點Px軸的垂線(垂線位于點A的右側(cè)),分別交y=x+m的圖象與點B、C.

1)求mn的值;

2)若BC=OD,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形中,點上一點,連接

如圖,若,菱形邊長為,,連接,求的長.

如圖,連接對角線相交于點,點的中點,過,連接、.試判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AD平分∠BAC,DGBC且平分BC,DEABE,DFACF

(1) 說明BECF的理由

(2) 如果ABaACb,求AE、BE的長

查看答案和解析>>

同步練習(xí)冊答案