如圖,PA、PB切⊙O于A、B兩點(diǎn),C為優(yōu)
ACB
一點(diǎn),已知∠BCA=50°,則∠APB=
80°
80°
分析:首先連接過(guò)切點(diǎn)的半徑,根據(jù)切線的性質(zhì)求得∠AOB的度數(shù),再根據(jù)四邊形的內(nèi)角和定理就可得出要求的角.
解答:解:連接OA,OB,
∵PA,PB是⊙O的切線,
∴PA⊥OA,PB⊥OB,
∴∠AOB=2∠BCA=2×50°=100°,
∴∠APB=180°-90°-90°-100°=80°,
故答案為:80°.
點(diǎn)評(píng):此題連接過(guò)切點(diǎn)的半徑是常見的輔助線.此題綜合運(yùn)用了切線的性質(zhì)定理和圓周角定理解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,PA、PB切⊙O于A、B兩點(diǎn),若∠APB=60°,⊙O的半徑為3,則陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,PA、PB切⊙O于點(diǎn)A、B,AC是⊙O的直徑,且∠BAC=35°,則∠P=
70
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,PA、PB切⊙O于A、B,PO及其延長(zhǎng)線分別交⊙O于C、D,AE為⊙O的直徑,連接AB、AC,下列結(jié)論:①
CB
=
DE
;②∠ABP=∠DOE;③AC平分∠PAB;④∠CAB=∠BAE;其中正確的有( 。
A、①②③B、①②③④
C、①②④D、②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA、PB切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,分別交PA、PB于點(diǎn)C、D.若PA、PB的長(zhǎng)是關(guān)于x的一元二次方程x2-mx+m-1=0的兩個(gè)根,求△PCD的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案

  • <input id="seg0a"></input>