【題目】某商店經(jīng)銷一種成本為每千克元的水產(chǎn)品,據(jù)市場分析,若按每千克元銷售,一個(gè)月能售出,銷售單價(jià)每漲(或跌)元,月銷售量就減少(或增加),解答以下問題:
(1)當(dāng)銷售單價(jià)定位每千克元時(shí),計(jì)算月銷售量和月銷售利潤;
(2)商店想在月銷售成本不超過元的情況下,使得月銷售利潤達(dá)到元,銷售單價(jià)應(yīng)為多少?
(3)商店要使得月銷售利潤達(dá)到最大,銷售單價(jià)應(yīng)為多少?此時(shí)利潤為多少?
【答案】(1)450千克,6750元;(2)銷售單價(jià)應(yīng)為元;(3)銷售單價(jià)應(yīng)為,此時(shí)利潤元.
【解析】
(1)銷售單價(jià)每漲價(jià)1元,月銷售量就減少10千克.那么漲價(jià)5元,月銷售量就減少50千克.根據(jù)月銷售利潤=每件利潤×數(shù)量即可求出題目的結(jié)果;
(2)等量關(guān)系為:銷售利潤=每件利潤×數(shù)量,設(shè)單價(jià)應(yīng)定為x元,根據(jù)這個(gè)等式即可列出方程求解,再結(jié)合銷售成本不超過元進(jìn)行取舍即可;
(3)根據(jù)(2)中的相等關(guān)系列出函數(shù)解析式,化為頂點(diǎn)式即可求出答案.
500-10×(35-30)=450(千克),
(35-20)×450= 6750(元).
設(shè)應(yīng)漲價(jià)x元,由題意得,
(30+x-20)(500-10x)=8000,
解得x=10或x=30.
當(dāng)x=10時(shí),20×[500-10×(40-30)]=8000(元),舍去;
當(dāng)x=30時(shí),20×[500-10×(60-30)]=4000(元).
∴銷售單價(jià)應(yīng)為元;
∵月銷售利潤
,
∴當(dāng)時(shí),,
答:商店要使得月銷售利潤達(dá)到最大,銷售單價(jià)應(yīng)為,此時(shí)利潤元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:如圖1,若一個(gè)四邊形的兩條對(duì)角線互相垂直,則稱這個(gè)四邊形為垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請(qǐng)說明理由;
(2)性質(zhì)探究:如圖1,試在垂美四邊形ABCD中探究AB2,CD2,AD2,BC2之間的關(guān)系,并說明理由;
(3)解決問題:如圖3,分別以Rt△ABC的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結(jié)CE、BG、GE、CE交BG于點(diǎn)N,交AB于點(diǎn)M.已知AC=,AB=2,求GE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(2,1)是正比例函數(shù)ykx(其中k0)和反比例函數(shù)y(其中t0)的圖像在第一象限的交點(diǎn),點(diǎn)B是這兩個(gè)函數(shù)圖像的另一個(gè)交點(diǎn),點(diǎn)C是x軸上一點(diǎn).
(1)求這兩個(gè)函數(shù)的解析式并直接寫出點(diǎn)B的坐標(biāo);
(2)求當(dāng)ABC為等腰三角形時(shí),點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將圖1,將一張直角三角形紙片ABC折疊,使點(diǎn)A與點(diǎn)C重合,這時(shí)DE為折痕,△CBE為等腰三角形;再繼續(xù)將紙片沿△CBE的對(duì)稱軸EF折疊,這時(shí)得到了兩個(gè)完全重合的矩形(其中一個(gè)是原直角三角形的內(nèi)接矩形,另一個(gè)是拼合成的無縫隙、無重疊的矩形),我們稱這樣兩個(gè)矩形為“疊加矩形”.
(1)如圖2,正方形網(wǎng)格中的△ABC能折疊成“疊加矩形”嗎?如果能,請(qǐng)?jiān)趫D2中畫出折痕;
(2)如圖3,在正方形網(wǎng)格中,以給定的BC為一邊,畫出一個(gè)斜三角形ABC,使其頂點(diǎn)A在格點(diǎn)上,且△ABC折成的“疊加矩形”為正方形;
(3)如果一個(gè)三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是 ;
(4)如果一個(gè)四邊形一定能折成“疊加矩形”,那么它必須滿足的條件是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=kx2+(3k+2)x+1,對(duì)于任意負(fù)實(shí)數(shù)k,當(dāng)x<m時(shí),y隨x的增大而增大,則m的最大整數(shù)值為( 。
A. 2 B. ﹣2 C. ﹣1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點(diǎn)從點(diǎn)出發(fā)沿射線移動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿線段的延長線移動(dòng),點(diǎn),移動(dòng)的速度相同,與相交于點(diǎn).
(1)如圖1,過點(diǎn)作,交于點(diǎn),求證:;
(2)如圖2,,當(dāng)點(diǎn)移動(dòng)到的中點(diǎn)時(shí),求的長度;
(3)如圖3,過點(diǎn)作于點(diǎn).在點(diǎn)從點(diǎn)向點(diǎn)(點(diǎn)不與點(diǎn),重合)移動(dòng)的過程中,線段與的長度是否保持不變?nèi)舯3植蛔,?qǐng)求出與的長度和;若改變,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)市委和市政府“綠色環(huán)保,節(jié)能減排”的號(hào)召,幸福商場用3300元購進(jìn)甲、乙兩種節(jié)能燈共計(jì)100只,很快售完.這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:
進(jìn)價(jià)(元/只) | 售價(jià)(元/只) | |
甲種節(jié)能燈 | 30 | 40 |
甲種節(jié)能燈 | 35 | 50 |
(1)求幸福商場甲、乙兩種節(jié)能燈各購進(jìn)了多少只?
(2)全部售完100只節(jié)能燈后,商場共計(jì)獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校創(chuàng)客小組進(jìn)行機(jī)器人跑步大賽,機(jī)器人小和小從同一地點(diǎn)同時(shí)出發(fā),小在跑到1分鐘的時(shí)候監(jiān)控到程序有問題,隨即開始進(jìn)行遠(yuǎn)程調(diào)試,到3分鐘的時(shí)候調(diào)試完畢并加速前進(jìn),最終率先到達(dá)終點(diǎn),測控小組記錄的兩個(gè)機(jī)器人行進(jìn)的路程與時(shí)間的關(guān)系如圖所示,則以下結(jié)論正確的有_________ (填序號(hào)).
①兩個(gè)機(jī)器人第一次相遇時(shí)間是在第2分鐘;
②小每分鐘跑50米;
③賽程總長200米;
④小到達(dá)終點(diǎn)的時(shí)候小距離終點(diǎn)還有20米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com