(2013•益陽)閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),AB中點(diǎn)P的坐標(biāo)為(xp,yp).由xp-x1=x2-xp,得xp=
x1+x2
2
,同理yp=
y1+y2
2
,所以AB的中點(diǎn)坐標(biāo)為(
x1+x2
2
y1+y2
2
)
.由勾股定理得AB2=
.
x2-x1
  
.
2
+
.
y2-y1
  
.
2
,所以A、B兩點(diǎn)間的距離公式為AB=
(x2-x1)2+(y2-y1)2

注:上述公式對A、B在平面直角坐標(biāo)系中其它位置也成立.
解答下列問題:
如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點(diǎn),P為AB的中點(diǎn),過P作x軸的垂線交拋物線于點(diǎn)C.
(1)求A、B兩點(diǎn)的坐標(biāo)及C點(diǎn)的坐標(biāo);
(2)連結(jié)AB、AC,求證△ABC為直角三角形;
(3)將直線l平移到C點(diǎn)時(shí)得到直線l′,求兩直線l與l′的距離.
分析:(1)根據(jù)y=2x+2與拋物線y=2x2交于A、B兩點(diǎn),直接聯(lián)立求出交點(diǎn)坐標(biāo),進(jìn)而得出C點(diǎn)坐標(biāo)即可;
(2)利用兩點(diǎn)間距離公式得出AB的長,進(jìn)而得出PC=PA=PB,求出∠PAC+∠PCB=90°,即∠ACB=90°即可得出答案;
(3)點(diǎn)C作CG⊥AB于G,過點(diǎn)A作AH⊥PC于H,利用A,C點(diǎn)坐標(biāo)得出H點(diǎn)坐標(biāo),進(jìn)而得出CG=AH,求出即可.
解答:(1)解:由
y=2x+2
y=2x2
,
解得:
x1=
1-
5
2
y1=3-
5
x2=
1+
5
2
y2=3+
5

則A,B兩點(diǎn)的坐標(biāo)分別為:A(
1-
5
2
,3-
5
),B(
1+
5
2
,3+
5
),
∵P是A,B的中點(diǎn),由中點(diǎn)坐標(biāo)公式得P點(diǎn)坐標(biāo)為(
1-
5
2
+
1+
5
2
2
,
3-
5
+3+
5
2
),即(
1
2
,3),
又∵PC⊥x軸交拋物線于C點(diǎn),將x=
1
2
代入y=2x2中得y=
1
2
,
∴C點(diǎn)坐標(biāo)為(
1
2
,
1
2
).

(2)證明:由兩點(diǎn)間距離公式得:
AB=
(
1-
5
2
-
1+
5
2
)2+[(3-
5
)-(3+
5
)2
=5,PC=|3-
1
2
|=
5
2

∴PC=PA=PB,
∴∠PAC=∠PCA,∠PBC=∠PCB,
∴∠PAC+∠PCB=90°,即∠ACB=90°,
∴△ABC為直角三角形.

(3)解:過點(diǎn)C作CG⊥AB于G,過點(diǎn)A作AH⊥PC于H,
則H點(diǎn)的坐標(biāo)為(
1
2
,3-
5
),
∴S△PAC=
1
2
AP•CG=
1
2
PC•AH,
∴CG=AH=|
1-
5
2
-
1
2
|=
5
2

又直線l與l′之間的距離等于點(diǎn)C到l的距離CG,
∴直線l與l′之間的距離為
5
2
點(diǎn)評:此題主要考查了二次函數(shù)的綜合應(yīng)用以及兩點(diǎn)之間距離公式和兩函數(shù)交點(diǎn)坐標(biāo)求法等知識,根據(jù)數(shù)形結(jié)合得出H點(diǎn)坐標(biāo)是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•益陽)已知一次函數(shù)y=x-2,當(dāng)函數(shù)值y>0時(shí),自變量x的取值范圍在數(shù)軸上表示正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•益陽)下表中的數(shù)字是按一定規(guī)律填寫的,表中a的值應(yīng)是
21
21

1 2 3 5 8 13 a
2 3 5 8 13 21 34

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•益陽)“二廣”高速在益陽境內(nèi)的建設(shè)正在緊張地進(jìn)行,現(xiàn)有大量的沙石需要運(yùn)輸.“益安”車隊(duì)有載重量為8噸、10噸的卡車共12輛,全部車輛運(yùn)輸一次能運(yùn)輸110噸沙石.
(1)求“益安”車隊(duì)載重量為8噸、10噸的卡車各有多少輛?
(2)隨著工程的進(jìn)展,“益安”車隊(duì)需要一次運(yùn)輸沙石165噸以上,為了完成任務(wù),準(zhǔn)備新增購這兩種卡車共6輛,車隊(duì)有多少種購買方案,請你一一寫出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•張家界)閱讀材料:求1+2+22+23+24+…+22013的值.
解:設(shè)S=1+2+22+23+24+…+22012+22013,將等式兩邊同時(shí)乘以2得:
   2S=2+22+23+24+25+…+22013+22014
   將下式減去上式得2S-S=22014-1
   即S=22014-1
   即1+2+22+23+24+…+22013=22014-1
請你仿照此法計(jì)算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n為正整數(shù)).

查看答案和解析>>

同步練習(xí)冊答案