【題目】已知拋物線y=ax2+bx+c(a≠0)上部分點的橫坐標x與縱坐標y的對應(yīng)值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … |
| ﹣4 | ﹣4 | 0 | … |
(1)求該拋物線的表達式;
(2)已知點E(4, y)是該拋物線上的點,點E關(guān)于拋物線的對稱軸對稱的點為點F,求點E和點F的坐標.
【答案】(1)y=(x+1)2﹣;(2)E點坐標為(4,8),點F的坐標為(﹣6,8).
【解析】
(1)利用拋物線的對稱性得到拋物線的頂點坐標為(﹣1,﹣ ),則可設(shè)頂點式y=a(x+1)2﹣,然后把(0,﹣4)代入求出a即可;
(2)計算當x=4時對應(yīng)的函數(shù)值得到E點坐標,然后利用對稱的性質(zhì)確定點F的坐標.
(1)∵x=﹣2,y=﹣4;x=0,y=﹣4,
∴拋物線的對稱軸為直線x=﹣1,則拋物線的頂點坐標為(﹣1,﹣),
設(shè)拋物線解析式為y=a(x+1)2﹣,
把(0,﹣4)代入得a(0+1)2﹣=﹣4,解得a=,
∴拋物線解析式為y= (x+1)2﹣;
(2)當x=4時,y= (4+1)2﹣=8,則E點坐標為(4,8),
∵拋物線的對稱軸為直線x=﹣1
∴點E關(guān)于拋物線的對稱軸對稱的點F的坐標為(﹣6,8).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面坐標系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。
A. B. C. D.
【答案】D
【解析】A.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝上,與圖象不符,故A選項錯誤;
B.由函數(shù)y=mx+m的圖象可知m<0,對稱軸為x=<0,則對稱軸應(yīng)在y軸左側(cè),與圖象不符,故B選項錯誤;
C.由函數(shù)y=mx+m的圖象可知m>0,即函數(shù)y=mx2+2x+2開口方向朝下,與圖象不符,故C選項錯誤;
D.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝上,對稱軸為x=<0,則對稱軸應(yīng)在y軸左側(cè),與圖象相符,故D選項正確;
故選:D.
【題型】單選題
【結(jié)束】
10
【題目】如圖,已知菱形ABCD的周長為16,面積為,E為AB的中點,若P為對角線BD上一動點,則EP+AP的最小值為( )
A. 2 B. 2 C. 4 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,連接BD、CE.將△ADE繞點A旋轉(zhuǎn),BD、CE也隨之運動.
(1)求證:BD=CE;
(2)在△ADE繞點A旋轉(zhuǎn)過程中,當AE∥BC時,求∠DAC的度數(shù);
(3)如圖②,當點D恰好是△ABC的外心時,連接DC,判斷四邊形ADCE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為豐富學(xué)生的文體生活,某學(xué)校準備成立“聲樂、演講、舞蹈、足球、籃球”五個社團,要求每個學(xué)生都參加一個社團且每人只能參加一個社團.為了了解即將參加每個社團的大致人數(shù),學(xué)校對部分學(xué)生進行了抽樣調(diào)查,在整理調(diào)查數(shù)據(jù)的過程中,繪制出如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:
(1)被抽查的學(xué)生一共有人__________;
(2)將條形統(tǒng)計圖補充完整;
(3)若全校有學(xué)生1500人,請你估計全校有意參加“聲樂”杜團的學(xué)生人數(shù);
(4)在“舞蹈社團”活動中,甲、乙、丙、丁、戊五位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)決定從這五位同學(xué)中任選兩位參加“元旦迎新匯演”,請用列表或畫樹狀圖的方法求出恰好選中甲、乙兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為5,點A的坐標為(﹣4,0),點B在y軸上,若反比例函數(shù)(k≠0)的圖象過點C,則該反比例函數(shù)的表達式為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中四邊形OABC是邊長為6的正方形,平行于對角線AC的直線l從O出發(fā),沿x軸正方向以每秒一個單位長度的速度運動,運動到直線l與正方形沒有交點為止,設(shè)直線l掃過正方形OABC的面積為S,直線l的運動時間為t(秒),下列能反映S與t之間的函數(shù)圖象的是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c與x軸交于A、B兩點,A(﹣5,0),與y軸交于C(0,﹣5),并且對稱軸x=﹣3.
(1)求拋物線的解析式;
(2)P在x軸上方的拋物線上,過P的直線y=x+m與直線AC交于點M,與y軸交于點N,求PM+MN的最大值;
(3)點D為拋物線對稱軸上一點,
①當△ACD是以AC為直角邊的直角三角形時,求D點坐標;
②若△ACD是銳角三角形,求點D的縱坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是我國古代城市用以滯洪或分洪系統(tǒng)的局部截面原理圖,圖中為下水管道口直徑,為可繞轉(zhuǎn)軸自由轉(zhuǎn)動的閥門,平時閥門被管道中排出的水沖開,可排出城市污水:當河水上漲時,閥門會因河水壓迫而關(guān)閉,以防止河水倒灌入城中.若閥門的直徑,為檢修時閥門開啟的位置,且.
(1)直接寫出閥門被下水道的水沖開與被河水關(guān)閉過程中的取值范圍;
(2)為了觀測水位,當下水道的水沖開閥門到達位置時,在點處測得俯角,若此時點恰好與下水道的水平面齊平,求此時下水道內(nèi)水的深度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小東設(shè)計的“過直線上一點作這條直線的垂線”的尺規(guī)作圖過程.
已知:直線l及直線l上一點P.
求作:直線PQ,使得PQ⊥l.
作法:如圖,
①在直線l上取一點A(不與點P重合),分別以點P,A為圓心,AP長為半徑畫弧,兩弧在直線l的上方相交于點B;
②作射線AB,以點B為圓心,AP長為半徑畫弧,交AB的延長線于點Q;
③作直線PQ.
所以直線PQ就是所求作的直線.
根據(jù)小東設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:連接BP,
∵ = = =AP,
∴點A,P,Q在以點B為圓心,AP長為半徑的圓上.
∴∠APQ=90°( ).(填寫推理的依據(jù))
即PQ⊥l.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com