【題目】如圖是由邊長為1的小正方形構(gòu)成的網(wǎng)格,每個小正方形的頂點叫格點,的頂點都在格點上,僅用無刻度的直尺在網(wǎng)格中畫圖(保留作圖連線痕跡),并回答問題.
(1)在的右邊找格點,連,使平分.
(2)若與交于,直接寫出的值.
(3)找格點,連,使于.
(4)在上找點,連,使.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為拋物線的部分圖象,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為(﹣1,0),下列結(jié)論:
①4ac<b2
②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3
③3a+c>0
④當(dāng)y>0時,x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時,y隨x增大而增大
其中正確的結(jié)論是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)在第二象限的圖象經(jīng)過點B,且,則k的值 ( )
A.4B.8C.-4D.-8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,四邊形OACB為菱形,OB在x軸的正半軸上,∠AOB=60°,過點A的反比例函數(shù)y= 的圖像與BC交于點F,則△AOF的面積為 ______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于反比例函數(shù)圖像,下列說法錯誤的是( )
A.其圖象位于第一象限和第三象限
B.其圖象上,在每一象限內(nèi),的值隨的值的增大而減小
C.其圖象關(guān)于原點中心對稱
D.為圖象上任意一點,軸于,軸于,則矩形的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點D是AB的中點,點P是直線BC上一點,將△BDP沿DP所在的直線翻折后,點B落在B1處,若B1D⊥BC,則點P與點B之間的距離為( 。
A.1B.C.1或 3D.或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為A(1,0),等腰直角三角形ABC的邊AB在x軸的正半軸上,∠ABC=90°,點B在點A的右側(cè),點C在第一象限.將△ABC繞點A逆時針旋轉(zhuǎn),
(1)若=75°,如果點C的對應(yīng)點E恰好落在軸的正半軸上,求AB的長;
(2)若旋轉(zhuǎn)°后,有DE∥AC,且點B的對應(yīng)點D也恰好落在軸的正半軸上,求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2與x軸交于點A(﹣1,0)和點B(2,0),與y軸交于點C.
(1)求該拋物線的函數(shù)解析式;
(2)如圖1,連接BC,點D是BC上方拋物線上的動點,連接OD、CD,OD交BC于點F,當(dāng)時,求的值;
(3)如圖2,點E的坐標(biāo)為,在拋物線上是否存在點P,使∠OBP=2∠OBE?若存在,請求出符合條件的點P的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°.
(1)按要求尺規(guī)作圖,保留作圖痕跡
①作∠ABC平分線交AC于F點,
②作BF的垂直平分線交AB于M,以MB為半徑作圓⊙M;
(2)在(1)所作圖形中,證明⊙M與邊AC相切;
(3)在(1)所作圖形中,若∠CFB=∠CBA,BC=3,求⊙M的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com