【題目】在平面直角坐標系xOy中,拋物線y=ax2+bx+2過B(﹣2,6),C(2,2)兩點.
(1)試求拋物線的解析式;
(2)記拋物線頂點為D,求△BCD的面積;
(3)若直線y=﹣ x向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍.
【答案】
(1)
解:由題意 解得 ,
∴拋物線解析式為y= x2﹣x+2.
(2)
解:∵y= x2﹣x+2= (x﹣1)2+ .
∴頂點坐標(1, ),
∵直線BC為y=﹣x+4,∴對稱軸與BC的交點H(1,3),
∴S△BDC=S△BDH+S△DHC= 3+ 1=3.
(3)
解:
由 消去y得到x2﹣x+4﹣2b=0,
當△=0時,直線與拋物線相切,1﹣4(4﹣2b)=0,
∴b= ,
當直線y=﹣ x+b經(jīng)過點C時,b=3,
當直線y=﹣ x+b經(jīng)過點B時,b=5,
∵直線y=﹣ x向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,
∴ <b≤3.
【解析】(1)根據(jù)待定系數(shù)法即可解決問題.(2)求出直線BC與對稱軸的交點H,根據(jù)S△BDC=S△BDH+S△DHC即可解決問題.(3)由 ,當方程組只有一組解時求出b的值,當直線y=﹣ x+b經(jīng)過點C時,求出b的值,當直線y=﹣ x+b經(jīng)過點B時,求出b的值,由此即可解決問題.本題考查待定系數(shù)法確定二次函數(shù)解析式、二次函數(shù)性質(zhì)等知識,解題的關鍵是求出對稱軸與直線BC交點H坐標,學會利用判別式確定兩個函數(shù)圖象的交點問題,屬于中考?碱}型.
【考點精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標系中的圖象可能是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y=kx+b與拋物線y= x2交于A(x1 , y1)、B(x2 , y2)兩點,當OA⊥OB時,直線AB恒過一個定點,該定點坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列兩個等式:2﹣=2×+1,5﹣=5×+1,給出定義如下:我們稱使等式a﹣b=ab+1的成立的一對有理數(shù)a,b為“共生有理數(shù)對”,記為(a,b),如:數(shù)對(2,),(5,),都是“共生有理數(shù)對”.
(1)數(shù)對(﹣2,1),(3,)中是“共生有理數(shù)對”的是 ;
(2)若(m,n)是“共生有理數(shù)對”,則(﹣n,﹣m) “共生有理數(shù)對”(填“是”或“不是”);
(3)請再寫出一對符合條件的“共生有理數(shù)對”為 ;(注意:不能與題目中已有的“共生有理數(shù)對”重復)
(4)若(a,3)是“共生有理數(shù)對”,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l:y=﹣x,雙曲線y= ,在l上取一點A(a,﹣a)(a>0),過A作x軸的垂線交雙曲線于點B,過B作y軸的垂線交l于點C,過C作x軸的垂線交雙曲線于點D,過D作y軸的垂線交l于點E,此時E與A重合,并得到一個正方形ABCD,若原點O在正方形ABCD的對角線上且分這條對角線為1:2的兩條線段,則a的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,已知A(2,2)、B(4,0).若在坐標軸上取點C,使△ABC為等腰三角形,則滿足條件的點C的個數(shù)是( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=1+2cosxcos(x+3φ)是偶函數(shù),其中φ∈(0, ),則下列關于函數(shù)g(x)=cos(2x﹣φ)的正確描述是( )
A.g(x)在區(qū)間[﹣ ]上的最小值為﹣1.
B.g(x)的圖象可由函數(shù)f(x)向上平移2個單位,在向右平移 個單位得到.
C.g(x)的圖象可由函數(shù)f(x)的圖象先向左平移 個單位得到.
D.g(x)的圖象可由函數(shù)f(x)的圖象先向右平移 個單位得到.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com