為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長25m)的空地上修建一條矩形綠化帶ABCD,綠化帶一邊靠墻,另三邊用總長為40m的柵欄圍。ㄈ鐖D).若設(shè)綠化帶BC邊長為xm,綠化帶的面積為ym2,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
分析:根據(jù)矩形的面積公式列出關(guān)于二次函數(shù)解析式;根據(jù)墻長、x、y所表示的實際意義來確定x的取值范圍.
解答:解:由題意得:y=x×
40-x
2
=-
1
2
x2+20x,自變量x的取值范圍是0<x≤25.
點評:此題主要考查了根據(jù)實際問題列二次函數(shù)解析式,注意在求自變量x的取值范圍時,要根據(jù)函數(shù)中自變量所表示的實際意義來確定.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長25m)的空地上修建一個矩形綠化帶ABCD,綠化精英家教網(wǎng)帶一邊靠墻,另三邊用總長為40m的柵欄圍。ㄈ鐖D4).若設(shè)綠化帶的BC邊長為xm,綠化帶的面積為ym2
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當x為何值時,滿足條件的綠化帶的面積最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長25m)的空地上修建一個矩形綠化帶ABCD,綠化帶一邊靠墻,另三邊用總長為40m的柵欄圍。ㄈ鐖D).若設(shè)綠化帶的BC邊長為xm,綠化帶的面積為ym2.則y與x之間的函數(shù)關(guān)系式是
y=-
1
2
x2+20x
y=-
1
2
x2+20x
,自變量x的取值范圍是
0<x≤25
0<x≤25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長25m)的空地上修建一個矩形綠化帶ABCD,綠化帶一邊靠墻,其他三邊用總長為60m柵欄圍住(如圖),若設(shè)綠化帶的BC邊長為x m,綠化帶的面積為y平方米.
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)是否存在綠化帶BC的長的某個值,使得綠化帶的面積為450平方米?若存在,請求出這個值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年浙江省杭州市蕭山區(qū)朝暉中學九年級(上)第一次月考數(shù)學試卷(解析版) 題型:填空題

為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長25m)的空地上修建一個矩形綠化帶ABCD,綠化帶一邊靠墻,另三邊用總長為40m的柵欄圍住(如圖).若設(shè)綠化帶的BC邊長為xm,綠化帶的面積為ym2.則y與x之間的函數(shù)關(guān)系式是    ,自變量x的取值范圍是   

查看答案和解析>>

同步練習冊答案