10、用反證法證明命題“三角形中最多有一個是直角”時,可以假設(shè)為
三角形中有一個或兩個角是直角
分析:在反證法的步驟中,第一步是假設(shè)結(jié)論不成立,可據(jù)此進行填空.
解答:解:根據(jù)反證法的步驟,則可假設(shè)為三角形中有一個或兩個角是直角.
點評:反證法的步驟是:
(1)假設(shè)結(jié)論不成立;
(2)從假設(shè)出發(fā)推出矛盾;
(3)假設(shè)不成立,則結(jié)論成立.
在假設(shè)結(jié)論不成立時,要注意考慮結(jié)論的反面所有可能的情況,這里三角形中最多有一個是直角的反面是三角形中有一個或兩個角是直角.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

15、用反證法證明命題“在一個三角形中,至少有一個內(nèi)角不小于60°”,假設(shè)為
三個內(nèi)角沒有一個小于或等于60°或三個內(nèi)角都大于60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、用反證法證明命題“一個三角形的三個內(nèi)角中,至多有一個鈍角”的第一步應(yīng)假設(shè)
一個三角形的三個內(nèi)角中,至少有兩個鈍角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用反證法證明命題“三角形的三個內(nèi)角中至少有一個角大于或等于60°”時,應(yīng)先假設(shè)∠A
60°,∠B
60°,∠C
60°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用反證法證明“三角形的三個內(nèi)角中,至少有一個內(nèi)角小于或等于60°”
證明:假設(shè)所求證的結(jié)論不成立,即
∠A
60°,∠B
60°,∠C
60°,
則∠A+∠B+∠C>
180°
180°

這與
內(nèi)角和180°
內(nèi)角和180°
相矛盾.
假設(shè)
假設(shè)
不成立.
求證的命題正確
求證的命題正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列說法正確的是( 。
A、等腰三角形的角平分線、中線、高線互相重合
B、面積相等的兩個三角形一定全等
C、用反證法證明命題“三角形中至少有一個角不大于60°”的第一步是“假設(shè)三角形中三個角都大于60°”
D、反比例函數(shù)y=
6
x
中函數(shù)值y隨自變量x的增大一定而減小

查看答案和解析>>

同步練習冊答案