如圖,點(diǎn)D為AC上一點(diǎn),點(diǎn)O為邊AB上一點(diǎn),AD=DO.以O(shè)為圓心,OD長(zhǎng)為半徑作圓,交AC于另一點(diǎn)E,交AB于點(diǎn)F,G,連接EF.若∠BAC=24º,則∠EFG=      

 

【答案】

36º

【解析】

試題分析:連接OE,利用三角形的外角性質(zhì)得出∠ODC的度數(shù),再求出∠DOC,從而求出∠EOG的度數(shù),再利用圓周角定理求出∠EFG的度數(shù).

如圖,連接EO,

∵AD=DO,

∴∠BAC=∠DOA=24°,

∴∠EDO=48°,

∵DO=EO,

∴∠OED=∠ODE=48°,

∴∠DOE=180°-48°-48°=84°,

∴∠EOG=180°-84°-24°=72°,

∴∠EFG=∠EOG=36°.

考點(diǎn):本題主要考查了圓周角定理,三角形外角的性質(zhì)

點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握同弧所對(duì)的圓周角等于圓心角的一半,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:Rt△ABC斜邊上的高為2.4,將這個(gè)直角三角形放置在平面直角坐標(biāo)系中,使其斜邊AB與x軸重合,直角頂點(diǎn)C落在y軸正半軸上,點(diǎn)A的坐標(biāo)為(-1.8,0).
(1)求點(diǎn)B的坐標(biāo)和經(jīng)過(guò)點(diǎn)A、B、C的拋物線(xiàn)的關(guān)系式;
(2)如圖①,點(diǎn)M為線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),MN∥AC,交線(xiàn)段BC于點(diǎn)N,MP∥BC,交線(xiàn)段AC于點(diǎn)P,連接PN,△MNP是否有最大面積?若有,求出△MNP的最大面積;若沒(méi)有,請(qǐng)說(shuō)明理由;
(3)如圖②,直線(xiàn)l是經(jīng)過(guò)點(diǎn)C且平行于x軸的一條直線(xiàn),如果△ABC的頂點(diǎn)C在直線(xiàn)l上向右平移m,(2)中的其它條件不變,(2)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)C為線(xiàn)段AB上任意一點(diǎn)(不與A、B重合),分別以AC、BC為一腰在AB的同側(cè)作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD與∠BCE都是銳角且∠ACD=∠BCE,連接AE交CD于點(diǎn)M,連接BD交CE于點(diǎn)N,AE與BD交于點(diǎn)P,連接PC.
(1)求證:△ACE≌△DCB;
(2)請(qǐng)你判斷△AMC與△DMP的形狀有何關(guān)系并說(shuō)明理由;
(3)求證:∠APC=∠BPC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•保定一模)四邊形一條對(duì)角線(xiàn)所在直線(xiàn)上的點(diǎn),如果到這條對(duì)角線(xiàn)的兩端點(diǎn)的距離不相等,但到另一對(duì)角線(xiàn)的兩個(gè)端點(diǎn)的距離相等,則稱(chēng)這點(diǎn)為這個(gè)四邊形的準(zhǔn)等距點(diǎn).如圖,點(diǎn)P為四邊形ABCD對(duì)角線(xiàn)AC所在直線(xiàn)上的一點(diǎn),PD=PB,PA≠PC,則點(diǎn)P為四邊形ABCD的準(zhǔn)等距點(diǎn).
(1)如圖2,畫(huà)出菱形ABCD的一個(gè)準(zhǔn)等距點(diǎn).
(2)如圖3,作出四邊形ABCD的一個(gè)準(zhǔn)等距點(diǎn)(尺規(guī)作圖,保留作圖痕跡,不要求寫(xiě)作法).
(3)如圖4,在四邊形ABCD中,P是AC上的點(diǎn),PA≠PC,延長(zhǎng)BP交CD于點(diǎn)E,延長(zhǎng)DP交BC于點(diǎn)F,且∠CDF=∠CBE,CE=CF.求證:點(diǎn)P是四邊形ABCD的準(zhǔn)等距點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

建設(shè)中的昆石高速公路,在某施工段上沿AC方向開(kāi)山修路,為加快施工速度,要在山坡的另一邊同時(shí)施工,如圖所示,從AC上的一點(diǎn)B取∠ABD=150°,BD=380米,∠D=60°,那么開(kāi)挖點(diǎn)E離D多遠(yuǎn),正好使A、C、E成一直線(xiàn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料,并回答問(wèn)題.
畫(huà)一個(gè)直角三角形,使它的兩條直角邊分別為5和12,那么我們可以量得直角三角形的斜邊長(zhǎng)為13,并且52+122=132.事實(shí)上,在任何一個(gè)直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方.如果直角三角形中,兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,則a2+b2=c2,這個(gè)結(jié)論就是著名的勾股定理.
請(qǐng)利用這個(gè)結(jié)論,完成下面的活動(dòng):
(1)一個(gè)直角三角形的兩條直角邊分別為6、8,那么這個(gè)直角三角形斜邊長(zhǎng)為
10
10

(2)滿(mǎn)足勾股定理方程a2+b2=c2的正整數(shù)組(a,b,c)叫勾股數(shù)組.例如(3,4,5)就是一組勾股數(shù)組.觀察下列幾組勾股數(shù)
①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
請(qǐng)你寫(xiě)出有以上規(guī)律的第⑤組勾股數(shù):
11,60,61
11,60,61

(3)如圖,AD⊥BC于D,AD=BD,AC=BE.AC=3,DC=1,求BD的長(zhǎng)度.

(4)如圖,點(diǎn)A在數(shù)軸上表示的數(shù)是
-
5
-
5
,請(qǐng)用類(lèi)似的方法在下圖數(shù)軸上畫(huà)出表示數(shù)
3
的B點(diǎn)(保留作圖痕跡).

查看答案和解析>>

同步練習(xí)冊(cè)答案