【題目】如圖,中,且是的中點
(1)求證:四邊形是平行四邊形。
(2)求證:四邊形是菱形。
(3)如果時,求四邊形ADBE的面積
(4)當(dāng) 度時,四邊形是正方形(不證明)
【答案】(1)見解析;(2)見解析;(3)24;(4)45.
【解析】
(1)推出CE=BD,CE∥BD,可證四邊形是平行四邊形;
(2)求出BDF=AE,BD∥AE,得出平行四邊形ADBE,根據(jù)DE∥BC,∠ABC=90°推出DE⊥AB,根據(jù)菱形的判定推出即可;
(3)由四邊形BDEC是平行四邊形,可得DE=BC=6,然后根據(jù)菱形的面積公式求解即可;
(4)當(dāng)45度時,可證△ABC是等腰直角三角形,從而AB=BC=DE,可證四邊形是正方形.
(1)證明:∵E是AC的中點,
∴CE=AE=AC,
∵DB=AC,
∵BD=CE,
∵BD∥AC,
∴BD∥CE,
∴四邊形BDEC是平行四邊形,
∴DE∥BC.
(2)證明:∵DE∥BC,∠ABC=90°,
∴DE⊥AB,
∵AE=AC,DB=AC,BD∥AC,
∴BD=AE,BD∥AE,
∴四邊形ADBE是平行四邊形,
∴平行四邊形ADBE是菱形;
(3)∵四邊形BDEC是平行四邊形,
∴DE=BC=6.
∵四邊形ADBE是菱形,
∴四邊形ADBE面積=;
(4)當(dāng)45度時,四邊形是正方形.
∵45,
∴△ABC是等腰直角三角形,
∴AB=BC=DE,
∵四邊形ADBE是菱形,
∴四邊形是正方形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,D是BC邊的中點,E是AC邊上的任意一點,△DCE和△DC′E關(guān)于直線DE對稱,若點C′ 恰好落在△ABC的中位線上,則CE的長度為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題一:如圖1,已知A,C兩點之間的距離為16 cm,甲,乙兩點分別從相距3cm的A,B兩點同時出發(fā)到C點,若甲的速度為8 cm/s,乙的速度為6 cm/s,設(shè)乙運動時間為x(s), 甲乙兩點之間距離為y(cm).
(1)當(dāng)甲追上乙時,x = .
(2)請用含x的代數(shù)式表示y.
當(dāng)甲追上乙前,y= ;
當(dāng)甲追上乙后,甲到達(dá)C之前,y= ;
當(dāng)甲到達(dá)C之后,乙到達(dá)C之前,y= .
問題二:如圖2,若將上述線段AC彎曲后視作鐘表外圍的一部分,線段AB正好對應(yīng)鐘表上的弧AB(1小時的間隔),易知∠AOB=30°.
(1)分針OD指向圓周上的點的速度為每分鐘轉(zhuǎn)動 cm;時針OE指向圓周上的點的速度為每分鐘轉(zhuǎn)動 cm.
(2)若從4:00起計時,求幾分鐘后分針與時針第一次重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F分別是ABCD的邊AD,BC上的點,EF=6,∠DEF=60,將四邊形EFCD沿EF翻折,得到 ,’交BC于點G,則△GEF的周長為( )
A. 6 B. 12 C. 18 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市開展“美麗自宮,創(chuàng)衛(wèi)同行”活動,某校倡議學(xué)生利用雙休日在“花!眳⒓恿x務(wù)勞動,為了解同學(xué)們勞動情況,學(xué)校隨機(jī)調(diào)查了部分同學(xué)的勞動時間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計圖,根據(jù)圖中信息回答下列問題:
(1)將條形統(tǒng)計圖補(bǔ)充完整;
(2)扇形圖中的“1.5小時”部分圓心角是多少度?
(3)求抽查的學(xué)生勞動時間的眾數(shù)、中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三個教師承擔(dān)本學(xué)期期末考試的第17題的網(wǎng)上閱卷任務(wù),若由這三人中的某一人獨立完成閱卷任務(wù),則甲需要15小時,乙需要10小時,丙需要8小時。
(1)如果甲、乙、丙三人同時改卷,那么需要多少時間完成?
(2)如果按照甲、乙、丙、甲、乙、丙、……的次序輪流閱卷,每一輪中每人各閱卷1小時。那么要多少小時完成?
(3)能否把(2)題所說的甲、乙、丙的次序作適當(dāng)調(diào)整,其余的不變,使得完成這項任務(wù)的時間至少提前半小時?(答題要求:如認(rèn)為不能,需要說明理由;如認(rèn)為能,請至少說出一種輪流的次序,并求出相應(yīng)能提前多少時間完成閱卷任務(wù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有學(xué)生3000人,現(xiàn)欲開展學(xué)校社團(tuán)活動,準(zhǔn)備組建攝影社、國學(xué)社、籃球社、科技制作社四個社團(tuán).每名學(xué)生最多只能報一個社團(tuán),也可以不報.為了估計各社團(tuán)人數(shù),現(xiàn)在學(xué)校隨機(jī)抽取了50名學(xué)生做問卷調(diào)查,得到了如圖所示的兩個不完全統(tǒng)計圖.
結(jié)合以上信息,回答下列問題:
(1)本次抽樣調(diào)查的樣本容量是_____;
(2)請你補(bǔ)全條形統(tǒng)計圖,并在圖上標(biāo)明具體數(shù)據(jù);
(3)求參與科技制作社團(tuán)所在扇形的圓心角度數(shù);
(4)請你估計全校有多少學(xué)生報名參加籃球社團(tuán)活動.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級全體同學(xué)參加了某項捐款活動,隨機(jī)抽查了部分同學(xué)捐款的情況統(tǒng)計如圖所示
(1)本次共抽查學(xué)生____人,并將條形圖補(bǔ)充完整;
(2)捐款金額的眾數(shù)是_____,平均數(shù)是_____;
(3)在八年級700名學(xué)生中,捐款20元及以上(含20元)的學(xué)生估計有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與x軸,y軸的正半軸分別交于點A,B,AB=2,∠OAB=45°
(1)求一次函數(shù)的解析式;
(2)如果在第二象限內(nèi)有一點C(a,);試用含有a的代數(shù)式表示四邊形ABCO的面積,并求出當(dāng)△ABC的面積與△ABO的面積相等時a的值;
(3)在x軸上,是否存在點P,使△PAB為等腰三角形?若存在,請直接寫出所有符合條件的點P坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com