【題目】如圖,在△ABC中,BO、CO分別是∠ABC、∠ACB的角平分線,求:
(1)若∠A=50°,求∠BOC的度數(shù).
(2)在其他條件不變的情況下,若∠A=n°,則∠A與∠BOC之間有怎樣的數(shù)量關(guān)系?
【答案】(1)115°;(2)∠BOC=90°+∠A.
【解析】試題分析:(1)根據(jù)三角形的內(nèi)角和得到∠ABC+∠ACB=180°-∠A=130°,由于BO、CO分別是△ABC的角∠ABC、∠ACB的平分線,得到∠OBC=∠ABC,∠OCB=∠ACB,根據(jù)三角形的內(nèi)角和即可得到結(jié)論;
(2)根據(jù)∠ABC與∠ACB的平分線相交于點(diǎn)O,得到∠OBC=∠ABC,∠OCB=∠ACB,于是得到∠OBC+∠OCB=(∠ABC+∠ACB),根據(jù)三角形內(nèi)角和即可得到結(jié)論.
試題解析:(1)∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=130°,
∵BO、CO分別是△ABC的角∠ABC、∠ACB的平分線,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-65°=115°;
(2)∵∠ABC與∠ACB的平分線相交于點(diǎn)O,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB),
在△OBC中,
∠BOC=180°-(∠OBC+∠OCB)
=180°-(∠ABC+∠ACB)
=180°-(180°-∠A)
=90°+∠A,
即∠BOC=90°+∠A.
考點(diǎn):三角形內(nèi)角和定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC,∠ABC=90°,以直角邊AB為直徑作⊙O,交斜邊AC于點(diǎn)D,連接BD.
(1)若AD=3,BD=4,求邊BC的長;
(2)取BC的中點(diǎn)E,連接ED,試證明ED與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第二象限,以A為頂點(diǎn)的拋物線經(jīng)過原點(diǎn),與x軸負(fù)半軸交于點(diǎn)B,對稱軸為直線x=﹣1,點(diǎn)C在拋物線上,且位于點(diǎn)A、B之間(C不與A、B重合).若△ABC的周長為m,四邊形AOBC的周長為 (用含m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC與BD相交于點(diǎn)O,MN過點(diǎn)O且與邊AD、BC分別交于點(diǎn)M和點(diǎn)N.
(1)請你判斷OM與ON的數(shù)量關(guān)系,并說明理由;
(2)過點(diǎn)D作DE∥AC交BC的延長線于E,當(dāng)AB=5,AC=6時,求△BDE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年某省遭遇歷史罕見的夏秋東連旱,全省因災(zāi)造成直接經(jīng)濟(jì)損失68.77億元,用科學(xué)計數(shù)法表示為( )
A、68.77×109 B、6.877×109 C、6.877×1010 D、6877×1010
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意有理數(shù)a,b,現(xiàn)用“☆”定義一種運(yùn)算:a☆b=a2﹣b2,根據(jù)這個定義,代數(shù)式(x+y)☆y可以化簡為( 。
A. xy+y2 B. xy﹣y2 C. x2+2xy D. x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:=1﹣,=,=﹣
將以上三個等式兩邊分別相加得:++=1﹣++﹣=1﹣=
(1)按照一定規(guī)律排列式子:++++…,其中第n項(n為正整數(shù))的形式為 ,按照材料中的寫法,該項可表示為 ﹣ .
(2)直接寫出下式:+++…+的計算結(jié)果為 .
(3)探究并計算:++…+(其中n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請寫出△ABC各點(diǎn)的坐標(biāo)。(2)求出S△ABC(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A′B′C′,在圖中畫出△A′B′C′,并寫出A′、B′、C′的坐標(biāo)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com