【題目】如圖,邊長(zhǎng)為3正方形的頂點(diǎn)與原點(diǎn)重合,點(diǎn)在軸,軸上。反比例函數(shù)的圖象交于點(diǎn),連接,.
(1)求反比例函數(shù)的解析式;
(2)過(guò)點(diǎn)作軸的平行線,點(diǎn)在直線上運(yùn)動(dòng),點(diǎn)在軸上運(yùn)動(dòng).
①若是以為直角頂點(diǎn)的等腰直角三角形,求的面積;
②將“①”中的“以為直角頂點(diǎn)的”去掉,將問(wèn)題改為“若是等腰直角三角形”,的面積除了“①”中求得的結(jié)果外,還可以是______.(直接寫(xiě)答案,不用寫(xiě)步驟)
【答案】(1);(2)①或.②5或17.
【解析】
(1)設(shè)的坐標(biāo)分別為,根據(jù)三角形的面積,構(gòu)建方程即可解決問(wèn)題.
(2)①分兩種情形畫(huà)出圖形:當(dāng)點(diǎn)P在線段BM上,當(dāng)點(diǎn)P在線段BM的延長(zhǎng)線上時(shí),分別利用全等三角形的性質(zhì)求解即可.
②當(dāng)點(diǎn)Q是等腰三角形的直角頂點(diǎn)時(shí),分兩種情形分別求解即可.
解:(1))∵四邊形OACD是正方形,邊長(zhǎng)為3,
∴點(diǎn)B的縱坐標(biāo)為3,點(diǎn)E的橫坐標(biāo)為3,
∵反比例函數(shù)的圖象交AC,CD于點(diǎn)B,E,
設(shè)的坐標(biāo)分別為.
∵S△OBE=4,
可得,.
解得,,(舍).
所以,反比例函數(shù)的解析式為.
(2))①如圖1中,設(shè)直線m交OD于M.
由(1)可知B(1,3),AB=1,BC=2,
當(dāng)PC=PQ,∠CPQ=90°時(shí),
∵∠CBP=∠PMQ=∠CPQ=90°,
∴∠CPB+∠BCP=90°,∠CPB+∠PQM=90°,
∴∠PCB=∠MPQ,∵PC=PQ,
∴△CBP≌△PMQ(AAS),
∴BC=PM=2,PB=MQ=1,
∴PC=PQ=
∴S△PCQ=
如圖2中,當(dāng)PQ=PC,∠CPQ=90°,
同法可得△CBP≌△PMQ(AAS),
∴PM=BC=2,OM=PB=5,
∴PC=PQ=,
∴S△PCQ=.
所以,的面積為或.
②當(dāng)點(diǎn)Q是等腰三角形的直角頂點(diǎn)時(shí),同法可得CQ=PQ=,此時(shí)S△PCQ=5.
或CQ′=PQ′=,可得S△P′CQ′=17,
不存在點(diǎn)C為等腰三角形的直角頂點(diǎn),
綜上所述,△CPQ的面積除了“①”中求得的結(jié)果外,還可以是5或17.
故答案為5或17.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3與x軸交于點(diǎn)C與直線AD交于點(diǎn)A(1,2),點(diǎn)D的坐標(biāo)為(0,1)
(1)求直線AD的解析式;
(2)直線AD與x軸交于點(diǎn)B,請(qǐng)判斷△ABC的形狀;
(3)在直線AD上是否存在一點(diǎn)E,使得4S△BOD=S△ACE,若存在求出點(diǎn)E的坐標(biāo),若不存在說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“萬(wàn)州古紅桔”原名“萬(wàn)縣紅桔”,古稱丹桔(以下簡(jiǎn)稱為紅桔),種植距今至少已有一千多年的歷史,“玫瑰香橙”(源自意大利西西里島塔羅科血橙,以下簡(jiǎn)稱香橙)現(xiàn)已是萬(wàn)州柑橘發(fā)展的主推品種之一.某水果店老板在2017年11月份用15200元購(gòu)進(jìn)了400千克紅桔和600千克香橙,已知香橙的每千克進(jìn)價(jià)比紅桔的每千克進(jìn)價(jià)2倍還多4元.
(1)求11月份這兩種水果的進(jìn)價(jià)分別為每千克多少元?
(2)時(shí)下正值柑橘銷售旺季,水果店老板決定在12月份繼續(xù)購(gòu)進(jìn)這兩種水果,但進(jìn)入12月份,由于柑橘的大量上市,紅桔和香橙的進(jìn)價(jià)都有大幅下滑,紅桔每千克的進(jìn)價(jià)在11月份的基礎(chǔ)上下降了m%,香橙每千克的進(jìn)價(jià)在11月份的基礎(chǔ)上下降了m%,由于紅桔和“玫瑰香橙”都深受庫(kù)區(qū)人民歡迎,實(shí)際水果店老板在12月份購(gòu)進(jìn)的紅桔數(shù)量比11月份增加了m%,香橙購(gòu)進(jìn)的數(shù)量比11月份增加了2m%,結(jié)果12月份所購(gòu)進(jìn)的這兩種柑橘的總價(jià)與11月份所購(gòu)進(jìn)的這兩種柑橘的總價(jià)相同,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E,F(xiàn)分別在邊AD、BC上,EF=2,∠DEF=60°將四邊形EFCD沿EF翻折,得到四邊形EFC’D’,ED’交BC于點(diǎn)G,則△GEF的周長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)市收府關(guān)于”垃圾不落地·市區(qū)更美麗”的主題宣傳活動(dòng),某校隨機(jī)調(diào)查了部分學(xué)生對(duì)垃圾分類知識(shí)的掌握情況.調(diào)查選項(xiàng)分為“A:非常了解,B:比較了解C:了解較少,D:不了解”四種,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)把兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若該校學(xué)生數(shù)1000名,根據(jù)調(diào)查結(jié)果,估計(jì)該校“非常了解”與“比較了解”的學(xué)生共有________名;
(3)已知“非常了解”的4名男生和1名女生,從中隨機(jī)抽取2名向全校做垃圾分類的知識(shí)交流,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求恰好抽到1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示的方式放置.點(diǎn)A1,A2,A3,…和點(diǎn)C1,C2,C3,…分別在直線y=kx+b(k>0)和x軸上,已知點(diǎn)B1(1,1),B2(3,2),則B5的坐標(biāo)是_____________ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:有理數(shù)m所表示的點(diǎn)到表示3的點(diǎn)距離4個(gè)單位,a、b互為相反數(shù),且都不為零,c、d互為倒數(shù).
(1)求m的值,
(2)求:的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:我們知道:如果點(diǎn)A.B在數(shù)軸上分別表示有理數(shù)a、b,那么A.B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A.B兩點(diǎn)之間的距離AB=|ab|.
根據(jù)上述材料,利用數(shù)軸解答下列問(wèn)題:
(1)如果點(diǎn)A在數(shù)軸上表示2,將點(diǎn)A先向左平移2個(gè)單位長(zhǎng)度,再向右移動(dòng)7個(gè)單位長(zhǎng)度,那么終點(diǎn)B在數(shù)軸上表示的數(shù)是___;
(2)數(shù)軸上表示x和1的兩個(gè)點(diǎn)之間的距離是___;
(3)若|x3|+|x+2|=7,則x的值是___;
(4)在(1)的條件下,設(shè)點(diǎn)P在數(shù)軸上表示的數(shù)為x,當(dāng)|PA||PB|=2時(shí),則x的值是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】重慶市第八中學(xué)校為給學(xué)生營(yíng)造良好舒適的休息環(huán)境,決定改造校園內(nèi)的—小花園,如圖是該花園的平面示意圖,它是由個(gè)正方形拼成的長(zhǎng)方形用以種植六種不同的植物,已知中間最小的正方形的邊長(zhǎng)是米,正方形、邊長(zhǎng)相等.請(qǐng)根據(jù)圖形特點(diǎn)求出該花園的總面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com