【題目】拋物線 y=x2+mx+n 過點(diǎn)(-1,8)和點(diǎn)(4,3)且與 x 軸交于 A,B 兩點(diǎn), y 軸交于點(diǎn) C

(1)求拋物線的解析式;

(2)如圖1,AD 交拋物線于 D,交直線 BC 于點(diǎn) G,且 AG=GD,求點(diǎn) D 的坐標(biāo);

(3)如圖2,過點(diǎn) M(3,2)的直線交拋物線于 P,Q,AP y 軸于點(diǎn) E,AQ y 軸于點(diǎn) F,求OE·OF的值.

【答案】(1)y=x2-4x+3;(2)D( )或(,);(3)2.

【解析】

(1)利用待定系數(shù)法求函數(shù)解析式即可;(2)先求得點(diǎn)A、B、C的坐標(biāo)及直線BC的解析式,過點(diǎn)GGR⊥x軸于點(diǎn)R,過點(diǎn)DDK⊥x軸于點(diǎn)K(如圖),由AG=GD,可得GR=DK,設(shè)點(diǎn)D的坐標(biāo)為(a,a2-4a+3),則點(diǎn)G的坐標(biāo)為( ,-+3),可得方程-+3=(a2-4a+3),解方程求得a的值,即可得點(diǎn)D的坐標(biāo);(3)設(shè)AQ的解析式為y=ax-a,AP的解析式為y=bx-b,分別根拋物線的解析式聯(lián)立,求得點(diǎn)P、Q的橫坐標(biāo),在設(shè)PQ的解析式為y=kx+b,代入M(3,2)可得y=kx+2-3k. PQ的解析式為與拋物線解析式聯(lián)立得到關(guān)于x的一元二次方程,然后依據(jù)一元二次方程根與系數(shù)的關(guān)系可求得ab=﹣2,再由ab的值可得到OEOF的值即可

(1)把點(diǎn)(-1,8)和點(diǎn)(4,3)代入y=x2+mx+n得,

,

解得

∴y=x2-4x+3;

(2)x2-4x+3=0,解得x=1x=3,

∴A(1,0),B(3,0);

x=0代入y=x2-4x+3y=3,

∴C(0,3);

∴直線BC的解析式為y=-x+3.

如圖,過點(diǎn)GGR⊥x軸于點(diǎn)R,過點(diǎn)DDK⊥x軸于點(diǎn)K,

∴GR∥DK,

∵AG=GD,

∴GR=DK,

設(shè)點(diǎn)D的坐標(biāo)為(a,a2-4a+3),則點(diǎn)G的坐標(biāo)為( ,-+3),

GR=-+3,DK= a2-4a+3,

∴-+3=(a2-4a+3),

整理得a2-3a-2=0,

解得,,

∴D(, )或().

(3)∵A(1,0),

設(shè)AQ的解析式為y=ax-a,AP的解析式為y=bx-b,

,解得x=1x=a+3,

∴點(diǎn)Q的橫坐標(biāo)為a+3,

同理求得點(diǎn)P的橫坐標(biāo)為b+3.

設(shè)PQ的解析式為y=kx+b,把點(diǎn) M(3,2)代入可得3k+b=2,即b=2-3k.

∴y=kx+2-3k.

∴kx+2-3k= x2-4x+3,即x2-(4+k)x+1+3k=0,

∵P、Q是拋物線y=x2-4x+3與直線PQ的交點(diǎn),

∴a+3、b+3是方程x2-(4+k)x+1+3k=0的兩個(gè)根,

∴a+3+b+3=4+k,(a+3)(b+3)=1+3k,

a+b=k-2,ab+3(a+b)+9=1+3k,

∴ab+3(k-2)+9=1-3k,

整理得ab=-2,

∵OE=-b,OF=a,

∴OEOF=-ab=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題6分)為了參加中考體育測(cè)試,甲,乙,丙三位同學(xué)進(jìn)行足球傳球訓(xùn)練。球從一個(gè)人

腳下隨機(jī)傳到另一個(gè)人腳下,且每位傳球人傳球給其余兩人的機(jī)會(huì)是均等的,由甲開始傳球,共傳三次。

1)求請(qǐng)用樹狀圖列舉出三次傳球的所有可能情況;

2)傳球三次后,球回到甲腳下的概率;

3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了對(duì)某市區(qū)全民閱讀狀況進(jìn)行調(diào)查和評(píng)估,有關(guān)部門隨機(jī)抽取了部分市民進(jìn)行每天閱讀時(shí)間情況的調(diào)查,并根據(jù)調(diào)查結(jié)果制做了如下尚不完整的頻數(shù)分布表(被調(diào)查者每天的閱讀時(shí)間均在0120分鐘之內(nèi))

閱讀時(shí)間x(分鐘)

0≤x30

30≤x60

60≤x90

90≤x≤120

頻數(shù)

450

400

m

50

頻率

0.45

0.4

0.1

n

1)被調(diào)查的市民人數(shù)為多少,表格中,mn為多少;

2)補(bǔ)全頻數(shù)分布直方圖;

3)某市區(qū)目前的常住人口約有118萬人,請(qǐng)估計(jì)該市區(qū)每天閱讀時(shí)間在60120分鐘的市民大約有多少萬人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】林場(chǎng)要建一個(gè)果園(矩形ABCD),果園的一面靠墻(墻最大可用長(zhǎng)度為30米),另三邊用木欄圍成,中間EF也用木欄隔開,分為甲、乙兩個(gè)場(chǎng)地,并在如圖所示的三處各留1米寬的門(不用木欄),木欄總長(zhǎng)57米.設(shè)果園(矩形ABCD)的寬ABx米,矩形ABCD的面積為S平方米.

(1)S關(guān)于x的函數(shù)表達(dá)式,并寫出自變量x的取值范圍.

(2)求果園能達(dá)到的最大面積S及相應(yīng)x的值.

(3)若木欄BFCF10,其余條件不變,甲場(chǎng)地種植葡萄,一季平均每平方米收益40元;乙場(chǎng)地種植益莓,一季平均每平方米收益160元.問該果園一季能達(dá)到的最大收益W為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果超市用5000元購進(jìn)一批新品種的蘋果進(jìn)行試銷,由于試銷狀況良好,超市又調(diào)撥11000元資金購進(jìn)該品種蘋果,但這次的進(jìn)貨價(jià)比試銷時(shí)每千克多了0.2元,購進(jìn)蘋果數(shù)量是試銷的2倍.

1)試銷時(shí)該品種蘋果的進(jìn)價(jià)是每千克多少元?

2)如果超市將該品種蘋果按每千克5元的定價(jià)出售,當(dāng)大部分蘋果售出后,余下的400千克按定價(jià)的七折售完,那么超市在這兩次蘋果銷售中共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題12分)如圖,已知點(diǎn)D△ABCBC邊上,DE∥ACABEDF//ABACF

1)求證:AE=DF

2)若AD平分∠BAC,試判斷四邊形AEDF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天,小明來到體育館看球賽,進(jìn)場(chǎng)時(shí),發(fā)現(xiàn)門票還在家里,此時(shí)離比賽開始還有25分鐘,于是立即步行回家取票.同時(shí),他父親從家里出發(fā)騎自行車以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車趕回體育館.下圖中線段、分別表示父、子倆送票、取票過程中,離體育館的路程(米)與所用時(shí)間(分鐘)之間的函數(shù)關(guān)系,結(jié)合圖象解答下列問題(假設(shè)騎自行車和步行的速度始終保持不變):

1】求點(diǎn)的坐標(biāo)和所在直線的函數(shù)關(guān)系式

2】小明能否在比賽開始前到達(dá)體育館

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】題目:如圖①,在四邊形ABCD中,ABAD,∠ABC=∠ADC,那么BCCD嗎?請(qǐng)說明理由.

小明的作法如下:

如圖②,連結(jié)AC.

ABAD,∠ABC=∠ADC,ACAC.

ABC≌△ADC.

BCCD.

1)小明的作法錯(cuò)誤的原因是 .

2)請(qǐng)正確解答這道題目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘.在整個(gè)步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t

(分)之間的關(guān)系如圖所示,下列結(jié)論:

甲步行的速度為60/分;

乙走完全程用了30分鐘;

乙用16分鐘追上甲;

乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有320

其中正確的結(jié)論有( 。

A. 1 個(gè)B. 2 個(gè)C. 3 個(gè)D. 4 個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案