【題目】若一個(gè)三角形三邊a,b,c滿足(a+b)2=c2+2ab,則這個(gè)三角形是( )

A. 等邊三角形 B. 鈍角三角形 C. 等腰直角三角形 D. 直角三角形

【答案】D

【解析】化簡(jiǎn)(a+b)2=c2+2ab,a2+b2=c2所以三角形是直角三角形,

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)要統(tǒng)計(jì)本校圖書(shū)館最受學(xué)生歡迎的圖書(shū)種類(lèi),以下是打亂順序的統(tǒng)計(jì)步驟:

①?gòu)纳刃螆D中分析出最受學(xué)生歡迎的種類(lèi);

②去圖書(shū)館收集學(xué)生借閱圖書(shū)的記錄;

③繪制扇形圖來(lái)表示各個(gè)種類(lèi)所占的百分比;

④整理借閱圖書(shū)記錄并繪制頻數(shù)分布表,正確統(tǒng)計(jì)步驟的順序是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,表示yx的正比例函數(shù)的是( 。

A. y=﹣0.1x B. y=2x2 C. y2=4x D. y=2x+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】互為相反數(shù)的兩數(shù)在數(shù)軸上的兩點(diǎn)間的距離為11,這兩個(gè)數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax﹣a(a為常數(shù))的圖象與y軸相交于點(diǎn)A,與函數(shù)y=的圖象相交于點(diǎn)B(m,1).

(1)求點(diǎn)B的坐標(biāo)及一次函數(shù)的解析式;

(2)若點(diǎn)P在y軸上,且PAB為直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于下列各組條件,不能判定≌△的一組是

A. A=A′,B=B′,AB=A′B′

B. A=A′AB=A′B′,AC=A′C′

C. A=A′,AB=A′B′,BC=B′C′

D. AB=A′B′AC=A′C′,BC=B′C′

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AM∥BN,∠A=60°.點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.
(1)①∠ABN的度數(shù)是; ②∵AM∥BN,∴∠ACB=∠;
(2)求∠CBD的度數(shù);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫(xiě)出它們之間的關(guān)系,并說(shuō)明理由;若變化,請(qǐng)寫(xiě)出變化規(guī)律.
(4)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),∠ABC的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明解不等式的過(guò)程如圖請(qǐng)指出他解答過(guò)程中錯(cuò)誤步驟的序號(hào),并寫(xiě)出正確的解答過(guò)程.

解:去分母3(1x)2(2x1)≤1.

去括號(hào),33x4x1≤1.

移項(xiàng)3x4x≤131.

合并同類(lèi)項(xiàng),得-x≤3.

兩邊都除以-1x≤3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣1,0),點(diǎn)C(0,5),另拋物線經(jīng)過(guò)點(diǎn)(1,8),M為它的頂點(diǎn).

(1)求拋物線的解析式;

(2)求MCB的面積

(3)在坐標(biāo)軸上,是否存在點(diǎn)N,滿足BCN為直角三角形?如存在,請(qǐng)直接寫(xiě)出所有滿足條件的點(diǎn)N.

查看答案和解析>>

同步練習(xí)冊(cè)答案