【題目】如圖,在平行四邊形中,為邊上的點(diǎn),,將沿翻折,點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在上,,則________.
【答案】32°.
【解析】
由折疊的性質(zhì):∠DFE=∠A,設(shè)∠BEC=x,由等腰三角形的性質(zhì)得出∠BCE=∠BEC=x,與平行四邊形的性質(zhì)得出∠A=∠BCD,AB∥CD,得出∠DCF=∠BEC=x,∠DFE=∠A=∠BCD=2x,在四邊形ADFE中,由四邊形內(nèi)角和定理得出方程,解方程即可.
解:由折疊的性質(zhì)可得:∠DFE=∠A,
設(shè)∠BEC=x,
∵BE=BC,
∴∠BCE=∠BEC=x,
∵四邊形ABCD是平行四邊形,
∴∠A=∠BCD,AB∥CD,
∴∠DCF=∠BEC=x,
∴∠DFE=∠A=∠BCD=2x,
在四邊形ADFE中,∠A+∠ADF+∠DFE+∠AEF=360°,
∴2x+84°+2x+180°-x=360°,
解得:x=32°,
∴∠BEC=32°;
故答案為:32°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(2,0),B(0,4),C(﹣3,2).
(1)如圖,求△ABC的面積.
(2)若點(diǎn)P的坐標(biāo)為(m,0),
①請(qǐng)直接寫出線段AP的長為______(用含m的式子表示);
②當(dāng)S△PAB=2S△ABC時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和直線BC相交于點(diǎn)B,連接AC,點(diǎn)D. E. H分別在AB、AC、BC上,連接DE、DH,F是DH上一點(diǎn),已知∠1+∠3=180°,
(1)求證:∠CEF=∠EAD;
(2)若DH平分∠BDE,∠2=α,求∠3的度數(shù).(用α表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,畫出函數(shù)y=2x+4的圖象;
(1)求圖象與x軸的交點(diǎn)A的坐標(biāo),與y軸交點(diǎn)B的坐標(biāo);
(2)在(1)的條件下,求出△AOB的面積;
(3)利用圖象直接寫出:當(dāng)y<0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:我們學(xué)習(xí)了整式的乘法,兩個(gè)多項(xiàng)式相乘,我們可以運(yùn)用法則,將其展開,例如:,而將等號(hào)的左右兩邊互換,我們得到了,等號(hào)的左邊是一個(gè)多項(xiàng)式,而右邊是幾個(gè)整式相乘的形式,我們規(guī)定將一個(gè)多項(xiàng)式寫成幾個(gè)整式相乘的形式,這種運(yùn)算稱之為“因式分解”
問題提出:
如何將進(jìn)行因式分解呢?
問題探究:
數(shù)形結(jié)合是解決數(shù)學(xué)問題的一種重要的思想方法,借助這種方法可將抽象的數(shù)學(xué)知識(shí)變得直觀起來并且具有可操作性,從而可以幫助我們快速解題.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過表示幾何圖形面積的方法進(jìn)行直觀推導(dǎo)和解釋
例如:我們可以通過表示幾何圖形面積的方法來快速的對(duì)多項(xiàng)式進(jìn)行因式分解.
如圖所示邊長為的大正方形是由1個(gè)邊長為的正方形,2個(gè)邊長為的長方形,1個(gè)邊長為的正方形,組成,我們可以用兩種方法表示大正方形的面積,這個(gè)圖形的面積可以表示成:或
∴
我們將等號(hào)左邊的多項(xiàng)式寫成了右邊兩個(gè)整式相乘的形式,從而成功的對(duì)多項(xiàng)式進(jìn)行了因式分解
請(qǐng)你類比上述方法,利用圖形的幾何意義對(duì)多項(xiàng)式進(jìn)行因式分解(要求自己構(gòu)圖并寫出推證過程)
問題拓展:
如何利用圖形幾何意義的方法推導(dǎo):?如圖,表示1個(gè)的正方形,即,表示1個(gè)的正方形,與恰好可以拼成1個(gè)的正方形,因此:、、就可以表示2個(gè)的正方形,即,而、、、恰好可以拼成一個(gè)的大正方形.由此可得:
嘗試解決:
請(qǐng)你類比上述推導(dǎo)過程,利用圖形幾何意義方法推導(dǎo)出的值.
(要求自己構(gòu)造圖形并寫出推證過程).
解:
歸納猜想:_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖1直線AB、BC、AC兩兩相交,交點(diǎn)分別為點(diǎn)A、B、C,點(diǎn)D在線段AB上過點(diǎn)D作交AC于點(diǎn)E,過點(diǎn)E作交BC于點(diǎn)F.若,求∠DEF的度數(shù)。
請(qǐng)將下面的解答過程補(bǔ)充完整,并填空(理由或數(shù)學(xué)式)
解:,
_________________.(_________________)
,
∴_____________.(_________________)
.(等量代換)
,
___________.
應(yīng)用:如圖2,直線AB、BC、AC兩兩相交,交點(diǎn)分別為點(diǎn)A、B、C,點(diǎn)D在線段AB的延長線上,過點(diǎn)D作交AC于點(diǎn)E,過點(diǎn)E作交BC于點(diǎn)F.若,則_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗購買學(xué)習(xí)用品的收據(jù)如表,因污損導(dǎo)致部分?jǐn)?shù)據(jù)無法識(shí)別,根據(jù)下表,解決下列問題:
(1)小麗買了自動(dòng)鉛筆、記號(hào)筆各幾支?
(2)若小麗再次購買軟皮筆記本和自動(dòng)鉛筆兩種文具,共花費(fèi)15元,則有哪幾種不同的購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題背景)
如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,點(diǎn)E、F分別是邊BC、CD上的點(diǎn),且∠EAF=60°,試探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.
小王同學(xué)探究此問題的方法是:延長FD到點(diǎn)G,使GD=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 .
(探索延伸)
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別是邊BC、CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由.
(學(xué)以致用)
如圖3,在四邊形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是邊AB上一點(diǎn),當(dāng)∠DCE=45°,BE=2時(shí),則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,4).
(1)AB的長等于 ;
(2)畫出△ABC向下平移5個(gè)單位后得到△A1B1C1,并寫出此時(shí)點(diǎn)A1的坐標(biāo);
(3)畫出△ABC繞原點(diǎn)O旋轉(zhuǎn)180后得到的△A2B2C2,并寫出此時(shí)點(diǎn)C2的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com