【題目】如圖,已知半徑為2的⊙O與直線l相切于點(diǎn)A,點(diǎn)P是直徑AB左側(cè)半圓上的動點(diǎn),過點(diǎn)P作直線l的垂線,垂足為C,PC與⊙O交于點(diǎn)D,連接PA、PB,設(shè)PC的長為x(2<x<4).
(1)當(dāng)x= 時,求弦PA、PB的長度;
(2)當(dāng)x為何值時,PDCD的值最大?最大值是多少?
【答案】
(1)解:∵⊙O與直線l相切于點(diǎn)A,且AB為⊙O的直徑,
∴AB⊥l,又∵PC⊥l,
∴AB∥PC,
∴∠CPA=∠PAB,
∵AB是⊙O的直徑,
∴∠APB=90°,又PC⊥l,
∴∠PCA=∠APB=90°,
∴△PCA∽△APB,
∴ ,即PA2=PCAB,
∵PC= ,AB=4,
∴PA= = ,
∴Rt△APB中,AB=4,PA= ,
由勾股定理得:PB= =
(2)解:過O作OE⊥PD,垂足為E,
∵PD是⊙O的弦,OE⊥PD,
∴PE=ED,
又∵∠CEO=∠ECA=∠OAC=90°,
∴四邊形OACE為矩形,
∴CE=OA=2,又PC=x,
∴PE=ED=PC﹣CE=x﹣2,
∴PD=2(x﹣2),
∴CD=PC﹣PD=x﹣2(x﹣2)=x﹣2x+4=4﹣x,
∴PDCD=2(x﹣2)(4﹣x)=﹣2x2+12x﹣16=﹣2(x﹣3)2+2,
∵2<x<4,
∴當(dāng)x=3時,PDCD的值最大,最大值是2.
【解析】(1)由直線l與圓相切于點(diǎn)A,且AB為圓的直徑,根據(jù)切線的性質(zhì)得到AB垂直于直線l,又PC垂直于直線l,根據(jù)垂直于同一條直線的兩直線平行,得到AB與PC平行,根據(jù)兩直線平行內(nèi)錯角相等得到一對內(nèi)錯角相等,再由一對直角相等,利用兩對對應(yīng)角相等的兩三角形相似可得出△PCA與△PAB相似,由相似得比例,將PC及直徑AB的長代入求出PA的長,在直角三角形PAB中,由AB及PA的長,利用勾股定理即可求出PB的長;(2)過O作OE垂直于PD,與PD交于點(diǎn)E,由垂徑定理得到E為PD的中點(diǎn),再由三個角為直角的四邊形為矩形得到OACE為矩形,根據(jù)矩形的對邊相等,可得出EC=OA=2,用PC﹣EC的長表示出PE,根據(jù)PD=2PE表示出PD,再由PC﹣PD表示出CD,代入所求的式子中,整理后得到關(guān)于x的二次函數(shù),配方后根據(jù)自變量x的范圍,利用二次函數(shù)的性質(zhì)即可求出所求式子的最大值及此時x的取值.
【考點(diǎn)精析】通過靈活運(yùn)用二次函數(shù)的最值和勾股定理的概念,掌握如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保障我國海外維和部隊(duì)官兵的生活,現(xiàn)需通過A港口、B港口分別運(yùn)送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運(yùn)送物資到港口的費(fèi)用(元/噸)如表所示:
港口 | 運(yùn)費(fèi)(元/臺) | |
甲庫 | 乙?guī)?/span> | |
A港 | 14 | 20 |
B港 | 10 | 8 |
(1)設(shè)從甲倉庫運(yùn)送到A港口的物資為x噸,求總運(yùn)費(fèi)y(元)與x(噸)之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求出最低費(fèi)用,并說明費(fèi)用最低時的調(diào)配方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在1,2,3,4,5這五個數(shù)中,先任意選出一個數(shù)a,然后在余下的數(shù)中任意取出一個數(shù)b,組成一個點(diǎn)(a,b),求組成的點(diǎn)(a,b)恰好橫坐標(biāo)為偶數(shù)且縱坐標(biāo)為奇數(shù)的概率.(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△COD是△AOB繞點(diǎn)O順時針旋轉(zhuǎn)40°后得到的圖形,若點(diǎn)C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知第一象限內(nèi)的圖象是反比例函數(shù)y= 圖象的一個分支,第二象限內(nèi)的圖象是反比例函數(shù)y=﹣ 圖象的一個分支,在x軸的上方有一條平行于x軸的直線l與它們分別交于點(diǎn)A、B,過點(diǎn)A、B作x軸的垂線,垂足分別為C、D.若四邊形ABCD的周長為8且AB<AC,則點(diǎn)A的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)悉,2013年財(cái)政部核定海南省發(fā)行的60億地方政府“債券資金”,全部用于交通等重大項(xiàng)目建設(shè).以下是60億“債券資金”分配統(tǒng)計(jì)圖:
(1)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,a= , b=(都精確到0.1);
(3)在扇形統(tǒng)計(jì)圖中,“教育文化”對應(yīng)的扇形圓心角的度數(shù)為°(精確到1°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB=DC,對角線AC、BD交于點(diǎn)O,AC⊥BD,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn).
(1)求證:四邊形EFGH是正方形;
(2)若AD=2,BC=4,求四邊形EFGH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個條件,不正確的是( )
A.∠ABD=∠C
B.∠ADB=∠ABC
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com