【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點,E,F(xiàn)分別是線段BM,CM的中點.
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)AD:AB=時,四邊形MENF是正方形(只寫結(jié)論,不需證明).
【答案】
(1)證明:∵四邊形ABCD是矩形,
∴AB=CD,∠A=∠D=90°,
又∵M是AD的中點,
∴AM=DM.
在△ABM和△DCM中,
,
∴△ABM≌△DCM(SAS)
(2)解:四邊形MENF是菱形.
證明如下:
∵E,F(xiàn),N分別是BM,CM,CB的中點,
∴NE∥MF,NE=MF.
∴四邊形MENF是平行四邊形.
由(1),得BM=CM,∴ME=MF.
∴四邊形MENF是菱形
(3)2:1
【解析】(3)解: 當(dāng)AD:AB=2:1時,四邊形MENF是正方形.理由:
∵M為AD中點,
∴AD=2AM.
∵AD:AB=2:1,
∴AM=AB.
∵∠A=90,
∴∠ABM=∠AMB=45°.
同理∠DMC=45°,
∴∠EMF=180°﹣45°﹣45°=90°.
∵四邊形MENF是菱形,
∴菱形MENF是正方形.
故答案為:2:1.
(1)根據(jù)矩形的性質(zhì)可得AB=CD,∠A=∠D=90°,再根據(jù)M是AD的中點,可得AM=DM,然后再利用SAS證明△ABM≌△DCM;(2)四邊形MENF是菱形.首先根據(jù)中位線的性質(zhì)可證明NE∥MF,NE=MF,可得四邊形MENF是平行四邊形,再根據(jù)△ABM≌△DCM可得BM=CM進而得ME=MF,從而得到四邊形MENF是菱形;(3)當(dāng)AD:AB=2:1時,四邊形MENF是正方形,證明∠EMF=90°根據(jù)有一個角為直角的菱形是正方形得到結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中,隨機事件是( 。
A.任意畫一個三角形,其內(nèi)角和為180°B.經(jīng)過有交通信號的路口,遇到紅燈
C.在只裝了紅球的袋子中摸到白球D.太陽從東方升起
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個說法:①兩點之間,線段最短;②連接兩點之間的線段叫做這兩點間的距離;③經(jīng)過直線外一點,有且只有一條直線與這條直線平行;④直線外一點與這條直線上各點連接的所有線段中,垂線段最短.其中正確的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OF,OD分別是∠AOE,∠BOE的平分線.
(1)寫出∠DOE的補角;
(2)若∠BOE=62°,求∠AOD和∠EOF的度數(shù);
(3)試問射線OD與OF之間有什么特殊的位置關(guān)系?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P(2-a,3a+6)到兩坐標(biāo)軸的距離相等,則點P的坐標(biāo)為( )
A. (3,3) B. (6,-6) C. (3,3)或(6,-6) D. (3,-3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com