【題目】如圖,-艘船由A港沿北偏東65°方向航行kmB港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向,求A,C兩港之間的距離.

【答案】

【解析】

過(guò)點(diǎn)BBMAC,垂足為M,由已知可得:BAM=45°,繼而可求得AM、BM的長(zhǎng),在Rt△CBM中,利用三角函數(shù)可求得CM=BM·tan30°=10,繼而根據(jù)AC=AM+CM即可求得答案.

過(guò)點(diǎn)BBMAC,垂足為M,

由已知可得:BAM=∠BAECAE=65°20°=45°,

∴AM=AB·cos45°=30=30BM=AM=30;

Rt△CBM中,CBM=∠GBH+∠HBACBGABM

=90°+25°40°45°=30°,

∴CM=BM·tan30°=30×=10

∴AC=AM+CM=30+10,

答:AC兩港之間的距離為()千米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知O的直徑AB垂直于弦CD于點(diǎn)E,連接CO并延長(zhǎng)交AD于點(diǎn)F,且CFAD

(1) 求證:EOB的中點(diǎn)

(2) AB8,求CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當(dāng)陽(yáng)光與水平線成45°角時(shí),測(cè)得鐵塔AB落在斜坡上的影子BD的長(zhǎng)為6米,落在廣告牌上的影子CD的長(zhǎng)為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線的對(duì)稱軸為直線,且經(jīng)、兩點(diǎn).

求拋物線的解析式;

在拋物線的對(duì)稱軸上,是否存在點(diǎn),使它到點(diǎn)的距離與到點(diǎn)的距離之和最小,如果存在求出點(diǎn)的坐標(biāo),如果不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小亮為了測(cè)量校園里教學(xué)樓AB的高度,將測(cè)角儀CD豎直放置在與教學(xué)樓水平距離為18m的地面上,若測(cè)角儀的高度為1.5m,測(cè)得教學(xué)樓的頂部A處的仰角為30°,則教學(xué)樓的高度是(    

A.55.5mB.54mC.19.5mD.18m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中裝有(除顏色外)完全相同的紅色小球1個(gè),白色小球1個(gè)和黃色小球2個(gè),

1)從中先摸出一個(gè)小球,記錄下它的顏色后,將它放回袋中攪勻,再摸出一個(gè)小球,記錄下顏色. 求摸出的兩個(gè)小球的顏色恰好是一紅一黃的概率是多少?

2)如果摸出第一個(gè)小球之后不放回袋中,再摸出第二個(gè)小球,這時(shí)摸出的兩個(gè)小球的顏色恰好是一紅一黃的概率是多少?

3)小明想給袋中加入一些紅色的小球,使從袋中任意摸出一個(gè)小球恰為紅色的概率為,請(qǐng)你幫小明算一算,應(yīng)該加入多少個(gè)紅色的小球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,分別是的中點(diǎn).

求證:四邊形是菱形

如果,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2+2k+1x+k2+1=0有兩個(gè)不等實(shí)根x1x2

1)求實(shí)數(shù)k的取值范圍

2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2,k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2-2(k-1)x+k2 =0有兩個(gè)實(shí)數(shù)根x1.x2.

(1)求實(shí) 數(shù)k的取值范圍;

(2)若(x1+1)(x2+1)=2,試求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案