【題目】如圖,已知AB:BC:CD=2:3:4,E、F分別為AB、CD中點,且EF=15.求線段AD的長.
【答案】解:設(shè)AB=2x,BC=3x,CD=4x, ∵E、F分別是AB和CD的中點,
∴BE= AB=x,CF= CD=2x,
∵EF=15cm,
∴BE+BC+CF=15cm,
∴x+3x+2x=15,
解得:x= ,
∴AD=AB+BC+CD=2x+3x+4x=9x= cm
【解析】根據(jù)題意可設(shè)AB=2x,然后根據(jù)圖形列出方程即可求出AD的長度.
【考點精析】關(guān)于本題考查的兩點間的距離,需要了解同軸兩點求距離,大減小數(shù)就為之.與軸等距兩個點,間距求法亦如此.平面任意兩個點,橫縱標差先求值.差方相加開平方,距離公式要牢記才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校積極響應(yīng)上級的號召,舉行了“決不讓一個學(xué)生因貧困而失學(xué)”的捐資助學(xué)活動,其中6個班同學(xué)的捐款平均數(shù)如下表:
班級 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
捐款平均數(shù)(元) | 6 | 4.6 | 4.1 | 3.8 | 4.8 | 5.2 |
則這組數(shù)據(jù)的中位數(shù)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標平面內(nèi),二次函數(shù)圖象的頂點為A(1,﹣4),且過點B(3,0).
(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象經(jīng)過坐標原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,矩形OABC的一邊OA在x軸上,點B的坐標為(4,3),雙曲線(x>0)交線段BC于點P(不與端點B、C重合),交線段AB于點Q
(1)若P為邊BC的中點,求雙曲線的函數(shù)表達式及點Q的坐標;
(2)求k的取值范圍;
(3)連接PQ,AC,判斷:PQ∥AC是否總成立?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長方形具有四個內(nèi)角均為直角,并且兩組對邊分別相等的特征.如圖,把一張長方形紙片ABCD折疊,使點C與點A重合,折痕為EF.
(1)如果∠DEF=130°,求∠BAF的度數(shù);
(2)判斷△ABF和△AGE是否全等嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線C:y=mx2+4x+1.
(1)當拋物線C經(jīng)過點A(﹣5,6)時,求拋物線的表達式及頂點坐標;
(2)若拋物線C:y=mx2+4x+1(m>0)與x軸的交點的橫坐標都在﹣1和0之間(不包括﹣1和0),結(jié)合函數(shù)的圖象,求m的取值范圍;
(3)參考(2)小問思考問題的方法解決以下問題:
關(guān)于x的方程x﹣4=在0<x<4范圍內(nèi)有兩個解,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組量中,不是互為相反意義的量的是( ).
A.收入200元與支出20元
B.上升10米與下降7米
C.超過0.05米與不足0.03米
D.增大2歲與減少2升
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知和都是關(guān)于x、y的方程y=kx+b的解.
(1)求k、b的值
(2)若不等式3+2x>m+3x的最大整數(shù)解是k,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com