在平面直角坐標系中,拋物線交x軸于A,B兩點,交y軸于點C,已知拋物線的對稱軸為x=1,B(3,0),C(0,-3).
(1)求這個拋物線的解析式;
(2)在拋物線的對稱軸上是否存在一點P,使點P到A、C兩點間的距離之和最。舸嬖,求出點P的坐標;若不存在,請說明理由.
(3)如果在x軸上方平行于x軸的一條直線交拋物線于M,N兩點,以MN為直徑作圓恰好與x軸相切,求此圓的直徑.
(1)設拋物線的解析式為:y=a(x-1)2+c,
把B(3,0),C(0,-3)代入得:
a(3-1)2+c=0
a(0-1)2+c=-3
,
解得a=1,c=-4,
∴拋物線的解析式為y=(x-1)2-4,
即y=x2-2x-3;

(2)存在.
∵由對稱性可知,A點的坐標為(-1,0),
∵C點坐標為(0,-3),B點坐標為(3,0),
∴直線BC的解析式為y=x-3,
∵P點在對稱軸上,設P點坐標為(1,y)代入y=x-3,
求得P點坐標為(1,-2);

(3)證明:設圓的半徑為r,
依題意有M(1-r,r),N(1+r,r)把M的坐標代入y=x2-2x-3,
整理得:r2-r-4=0,
解得r1=
1+
17
2
r2=
1-
17
2
(舍去),
∴所求圓的直徑為1+
17
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,如圖,拋物線y=ax2+bx+c經(jīng)過點A(-1,0),B(0,-3),C(3,0)三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,求sin∠BOD的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在體育測試時,初三的一名高個子男同學推鉛球,已知鉛球所經(jīng)過的路線是某個二次函數(shù)圖象的一部分,如圖所示,如果這個男同學的出手處A點的坐標(0,2),鉛球路線的最高處B點的坐標為(6,5).
(1)求這個二次函數(shù)的解析式;
(2)該男同學把鉛球推出去多遠?(精確到0.01米,
15
=3.873)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

平移二次函數(shù)y=2x2的圖象,使它經(jīng)過(-1,0),(2,-6)兩點.
(1)求這時圖象對應的函數(shù)關系式.
(2)求出拋物線的頂點坐標和對稱軸.
(3)畫出該函數(shù)的圖象.(溫馨提示:把坐標系畫全,可要記住列表喲)
x-10123
y0-6-8-60
(4)x為何值時,y隨x的增大而減小.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點A(0,-3),且頂點P的坐標為(1,-4),
(1)求這個函數(shù)的關系式;
(2)在平面直角坐標系中,畫出它的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,A(-1,0),B(3,0).
(1)若拋物線過A,B兩點,且與y軸交于點(0,-3),求此拋物線的頂點坐標;
(2)如圖,小敏發(fā)現(xiàn)所有過A,B兩點的拋物線如果與y軸負半軸交于點C,M為拋物線的頂點,那么△ACM與△ACB的面積比不變,請你求出這個比值;
(3)若對稱軸是AB的中垂線l的拋物線與x軸交于點E,F(xiàn),與y軸交于點C,過C作CPx軸交l于點P,M為此拋物線的頂點.若四邊形PEMF是有一個內角為60°的菱形,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一次函數(shù)y=x-5分別交x軸、y軸于A、B兩點,二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A、B兩點.
(1)求二次函數(shù)的解析式;
(2)設D、E是線段AB上異于A、B的兩個動點(E點位于D點上方),DE=
2

①若點D的橫坐標為t,用含t的代數(shù)式表示D、E的坐標;
②拋物線上是否存在點F,使點F與點D關于x軸對稱,如果存在,請求出△AEF的面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+3經(jīng)過A(-3,0),B(-1,0)兩點如圖1,頂點為M.
(1)求a、b的值;
(2)設拋物線與y軸的交點為Q,且直線y=-2x+9與直線OM交于點D(如圖1).現(xiàn)將拋物線平移,保持頂點在直線OD上,當拋物線的頂點平移到D點時,Q點移至N點,求拋物線上的兩點M、Q間所夾的曲線
MQ
掃過的區(qū)域的面積;
(3)將拋物線平移,當頂點M移至原點時,過點Q(0,3)作不平行于x軸的直線交拋物線于E,F(xiàn)兩點(如圖2).試探究:在y軸的負半軸上是否存在點P,使得∠EPQ=∠QPF?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

將進貨單價為40元的商品按50元售出時,就能賣出500個,已知這個商品每個漲價1元,其銷售量就減少10個.
(1)問:為了賺得8000元的利潤,售價應定為多少?這時進貨多少個?
(2)當定價為多少元時,可獲得最大利潤?

查看答案和解析>>

同步練習冊答案