【題目】華生電器商場在“雙11購物節(jié)”期間進行“現(xiàn)金返還”活動,凡購買指定家用電器的購買者均可得到該商品售價18%的返還現(xiàn)金.小芳家購買了一臺型洗衣機,小明家購買了一臺型洗衣機,兩家一共得到返還現(xiàn)金1170元,又知型洗衣機比型洗衣機售價高500元.
(1)型洗衣機和型洗衣機的售價各是多少元?
(2)小芳家和小明家購買洗衣機時除返還現(xiàn)金外實際各付款多少元?
【答案】(1)型洗衣機的售價為3000元,型洗衣機的售價為3500元;(2)小芳家和小明家購買洗衣機除返還現(xiàn)金外實際付款分別為2460元和2870元.
【解析】
(1)設(shè)型洗衣機售價為元,則型洗衣機的售價為元,根據(jù)等量關(guān)系,列出方程,即可得到答案;
(2)由第(1)的答案,分別減去返回的現(xiàn)金,即可得到答案.
(1)設(shè)型洗衣機售價為元,則型洗衣機的售價為元,
由題意得:,
解得:.
(元).
答:型洗衣機的售價為3000元,型洗衣機的售價為3500元.
(2)小芳家的實際付款:(元),
小明家的實際付款:(元),
答:小芳家和小明家購買洗衣機除返還現(xiàn)金外實際付款分別為2460元和2870元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,D、E、F分別是邊AB、BC、CA上的點,且EF∥AB, =2.
(1)設(shè),.試用、表示;
(2)如果△ABC的面積是9,求四邊形ADEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線的解析表達式為,且與軸交于點D,直線經(jīng)過點A,B,直線,交于點C.
(1)求直線的解析式;
(2)求△ADC的面積;
(3)在直線上存在異于點C的另一點P,使得△ADP與△ADC的面積相等,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.
(1)如圖 1,等腰直角四邊形 ABCD,AB=BC,∠ABC=90°.
圖 1
①若 AB=CD=1,AB∥CD,求對角線 BD 的長.
②若 AC⊥BD,求證:AD=CD;
(2) 如圖 2,矩形 ABCD 的長寬為方程 -14x+40=0 的兩根,其中(BC >AB),點 E 從 A 點出發(fā),以 1 個單位每秒的速度向終點 D 運動;同時點 F 從 C 點出發(fā),以 2 個單位每秒的速度向終點 B 運動,當點 E、F 運動過程中使四邊形 ABFE 是等腰直角四邊形時,求 EF 的長.
圖 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關(guān)系.
(1)L1表示哪輛汽車到甲地的距離與行駛時間的關(guān)系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關(guān)系式.
(4)2小時后,兩車相距多少千米?
(5)行駛多長時間后,A、B兩車相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,完成任務(wù):
自相似圖形
定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務(wù):
(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點C作CD⊥AB于點D,則CD將△ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平移和翻折是初中階段研究的兩種重要的圖形運動。
(平移運動)
(1)把筆尖放在數(shù)軸的原點,然后沿數(shù)軸向左移動 5 個單位長度,再向右移動3 個單位長度,這時筆尖的位置表示什么數(shù)?用算式可以將以上過程及結(jié)果表示為_____。
(2)把筆尖放在數(shù)軸的原點,第 1 次向左跳 2 個單位,緊接著第 2 次向右跳 4個單位,第 3 次向左跳 6 個單位,第 4 次向右跳 8 個單位,……依次規(guī)律跳,當它跳了 2019 次時,這時筆尖的位置表示的數(shù)是_____。
(翻折運動)
已知紙面上有一數(shù)軸,折疊紙面。
(3)若 1 表示的點與﹣1 表示的點重合,則﹣9 表示的點與_____表示的點重合。
(4)若 1 表示的點與﹣5 表示的點重合,回答以下問題:
① 3 表示的點與_____表示的點重合;
② 若數(shù)軸上 A,B 兩點之間的距離為 2020(A 在 B 的左側(cè),且折痕與①折痕相同),且 A、B 兩點經(jīng)折疊后重合,則 A 點表示的數(shù)是 _____,B 點表示的數(shù)是_____;
(5)若數(shù)軸上折疊重合的兩點表示的數(shù)分別為 a,b,那么數(shù) c 表示的點與數(shù)_______表示的點也重合。(用含有 a,b,c 的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD 中,邊CD 5 ,對角線 AC 8 , DB 6.
(1)求證:四邊形 ABCD 是菱形;
(2)過點 D 作 DH AB 于點 H ,若點 P 是線段 AC 上的一個動點,求 PH PB 的最小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com