【題目】已知:如圖,在△ABC中,AC=BC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)求證:DE是⊙O的切線;
(3)若⊙O的直徑為18,cosB=,求DE的長.
【答案】(1)見解析;(2)見解析;(3)4.
【解析】
(1)連接CD,由BC為直徑可知CD⊥AB,又BC=AC,由等腰三角形的底邊“三線合一”證明結(jié)論;
(2)連接OD,則OD為△ABC的中位線,OD∥AC,已知DE⊥AC,可證DE⊥OC,證明結(jié)論;
(3)連接CD,在Rt△BCD中,已知BC=18,cosB=,求得BD=6,則AD=BD=6,在Rt△ADE中,已知AD=6,cosA=cosB=,可求AE,利用勾股定理求DE.
(1)證明:連接CD,
∵BC是⊙O的直徑,
∴CD⊥AB,又∵AC=BC,
∴AD=BD,
∴點(diǎn)D是AB的中點(diǎn);
(2)證明:連接OD,
∵BD=DA,BO=OC,
∴DO是△ABC的中位線,
∴DO∥AC,
又∵DE⊥AC,
∴DE⊥DO,即DE是⊙O的切線;
(3)∵AC=BC,
∴∠B=∠A,
∴cos∠B=cos∠A=,
∵cos∠B==,BC=18,
∴BD=6,
∴AD=6,
∵cos∠A==,
∴AE=2,
在Rt△AED中,DE==4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB于E,交AC于F,過點(diǎn)O作OD⊥AC于D,下列四個(gè)結(jié)論:
①EF=BE+CF;
②∠BOC=90°+∠A;
③點(diǎn)O到△ABC各邊的距離相等;
④設(shè)OD=m,AE+AF=n,則S△AEF=mn.
其中正確的結(jié)論是( 。
A.①②③B.①②④C.②③④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在某一次實(shí)驗(yàn)中,測得兩個(gè)變量之間的關(guān)系如下表所示:
自變量x | 1 | 2 | 3 | 4 | 12 | |
因變量y | 12.03 | 5.98 | 3.04 | 1.99 | 1.00 |
請你根據(jù)表格回答下列問題:
① 這兩個(gè)變量之間可能是怎樣的函數(shù)關(guān)系?你是怎樣作出判斷的?請你簡要說明理由。
②請你寫出這個(gè)函數(shù)的解析式。
③表格中空缺的數(shù)值可能是多少?請你給出合理的數(shù)值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)開展“社會(huì)主義核心價(jià)值觀”演講比賽活動(dòng),九(1)、九(2)班根據(jù)初賽成績各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(滿分為100分)如圖所示.根據(jù)圖中數(shù)據(jù)解決下列問題:
(1)根據(jù)圖示求出表中的、、
平均數(shù) | 中位數(shù) | 眾數(shù) | |
九(1) | 85 | ||
九(2) | 85 | 100 |
, , .
(2)小明同學(xué)已經(jīng)算出了九(2)班復(fù)賽成績的方差:
,請你求出九(1)班復(fù)賽成績的方差;
(3)根據(jù)(1)、(2)中計(jì)算結(jié)果,分析哪個(gè)班級(jí)的復(fù)賽成績較好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示的圖形,像我們常見的符號(hào)——箭號(hào).我們不妨把這樣圖形叫做“箭頭四角形”.
探究:
(1)觀察“箭頭四角形”,試探究與、、之間的關(guān)系,并說明理由;
應(yīng)用:
(2)請你直接利用以上結(jié)論,解決以下兩個(gè)問題:
①如圖2,把一塊三角尺放置在上,使三角尺的兩條直角邊、恰好經(jīng)過點(diǎn)、,若,則 ;
②如圖3,、的2等分線(即角平分線)、相交于點(diǎn),若,
,求的度數(shù);
拓展:
(3)如圖4,,分別是、的2020等分線(),它們的交點(diǎn)從上到下依次為、、、…、.已知,,則 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AD方向向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿著CB方向向點(diǎn)B以3cm/s的速度運(yùn)動(dòng).點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).
(1)經(jīng)過多長時(shí)間,四邊形PQCD是平行四邊形?
(2)經(jīng)過多長時(shí)間,四邊形PQBA是矩形?
(3)經(jīng)過多長時(shí)間,當(dāng)PQ不平行于CD時(shí),有PQ=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,B、A、F三點(diǎn)在同一直線上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.
請你用其中兩個(gè)作為條件,另一個(gè)作為結(jié)論,構(gòu)造一個(gè)真命題,并證明.
己知:______________________________________________________.
求證:______________________________________________________.
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)和點(diǎn)是坐標(biāo)軸上兩點(diǎn),點(diǎn)為坐標(biāo)軸上一點(diǎn),若三角形的面積為,則點(diǎn)坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,半徑OA與弦BD垂直,點(diǎn)C在⊙O上,∠AOB=80°
(1)若點(diǎn)C在優(yōu)弧BD上,求∠ACD的大;
(2)若點(diǎn)C在劣弧BD上,直接寫出∠ACD的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com