如圖,C是射線 OE上的一動點,AB是過點 C的弦,直線DA與OE的交點為D,現(xiàn)有三個論斷: ①DA是⊙O的切線;②DA=DC;③ OD⊥OB.
請你以其中的兩個論斷為條件,另一個論斷為結論,用序號寫出一個真命題,
用“★★★”表示.并給出證明;我的命題是:               .
我的命題是:①②?③
證明:連接OA,則OA⊥DA,

∵DA=DC,∴∠DAC=∠DCA,
∵OA=OB,∴∠B=∠OAB;∵∠OAB+∠DAC=90°,又∵∠OCB=∠DCA,∴∠B+∠OCB=90°,∴BO⊥CO.(其它方法酌情給分)
本題主要考查了切線的性質(zhì),根據(jù)等角的余角相等,等邊對等角進行求解是本題的基本思路
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線的解析式為,⊙是以坐標原點為圓心,半徑為1的圓,點軸上運動,過點且與直線平行(或重合)的直線與⊙有公共點,則點的橫坐標為整數(shù)的點的個數(shù)有 ▲ 個.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)如圖,已知,以為直徑,為圓心的半圓交于點,點為弧CF的中點,連接于點,為△ABC的角平分線,且,垂足為點.

(1)求證:是半圓的切線;
(2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(11),梯形ABCD,AB∥CD ,AB=2cm,且∠OAB=30°,∠OBA=45°,梯形ABCD內(nèi)部的⊙O分別切四邊于E,F(xiàn),M,N,

小題1:求出⊙O的半徑OM的長度
小題2:求出梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在半徑為的⊙O中,弦、的長分別為,則的度數(shù)為           .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一量角器所在圓的直徑為10厘米,其外緣有A、B兩點,其讀數(shù)、分別為71°和47°.

(1).劣弧AB所對圓心角是多少度?
(2).求劣弧AB的長;
(3)問A、B之間的距離是多少?(可用計算器,精確到0.1)                       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖3所示,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,交AC于點E,連結OD、AD,則以下結論:①D是BC的中點;②AD⊥BC;③AD是∠BAC的平分線;④OD∥AC.其中正確結論的個數(shù)為(   )
A. 1個    B. 2個    C. 3個    D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

要在一個矩形紙片上畫出半徑分別是9cm和4cm的兩個外切圓,該矩形紙片面積的最小值是( )。
A. 468B.450C. 396D.225

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知圓柱的底面半徑為9cm,母線長為30cm,則圓柱的側面積為  ▲  cm2

查看答案和解析>>

同步練習冊答案