【題目】在如圖所示的運(yùn)算流程中,
(1)若輸入的數(shù)x=﹣4,則輸出的數(shù)y= ;
(2)若輸出的數(shù)y=5,則輸入的數(shù)x= .
【答案】(1)2.5;(2)﹣9或19.
【解析】
(1)按照運(yùn)算流程計(jì)算即可;
(2)按照運(yùn)算流程反推即可,注意最后輸出的數(shù)可能是經(jīng)過一次計(jì)算,也可能是經(jīng)過多次循環(huán)計(jì)算.
解:(1)若輸入x=﹣4,則﹣4﹣(﹣1)2=﹣4﹣1=﹣5,
﹣5÷(﹣2)=2.5>0,
∴輸出的數(shù)為2.5.
故答案為:2.5.
(2)若輸出的數(shù)是5,則5×(﹣2)=﹣10,
﹣10+(﹣1)2=﹣10+1=﹣9.
若只經(jīng)過一次流程,則輸入的數(shù)是﹣9,
若-9為上一次流程計(jì)算所得結(jié)果,則,-9×(﹣2)+(﹣1)2=19,
故經(jīng)過兩次流程,則輸入的數(shù)是19,此時(shí)不可能發(fā)生三次流程運(yùn)算,
故答案為:﹣9或19.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),另一動(dòng)點(diǎn)N同時(shí)從點(diǎn)B出發(fā),以1cm/s的速度沿著邊BA向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),設(shè)點(diǎn)M運(yùn)動(dòng)時(shí)間為x(s),△AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一定數(shù)量的石子可以擺成如圖所示的三角形和四邊形,古希臘科學(xué)家把數(shù)1,3,6,10,15,21,…,稱為“三角形數(shù)”;把1、4、9、16,25,…稱為“正方形數(shù)”.同樣的,可以把數(shù)1,5,12,22,…,等數(shù)稱為“五邊形數(shù)”.
將三角形、正方形、五邊形都整齊的由左到右填在所示表格里:
三角形數(shù) | 1 | 3 | 6 | 10 | 15 | 21 | a | … |
正方形數(shù) | 1 | 4 | 9 | 16 | 25 | b | 49 | … |
五邊形數(shù) | 1 | 5 | 12 | 22 | c | 51 | 70 | … |
(1)按照規(guī)律,表格中a= ,b= ,c= .
(2)觀察表中規(guī)律,第n個(gè)“正方形數(shù)”是 ;若第n個(gè)“三角形數(shù)”是x,則用含x、n的代數(shù)式表示第n個(gè)“五邊形數(shù)”是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD是BC邊上的中線,AE∥BC,CE⊥AE,垂足為E.
(1)求證:△ABD≌△CAE;
(2)連接DE,線段DE與AB之間有怎樣的位置和數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初三年級(jí)學(xué)習(xí)壓力大,放學(xué)后在家自學(xué)時(shí)間較初一、初二長,為了解學(xué)生學(xué)習(xí)時(shí)間,該年級(jí)隨機(jī)抽取25%的學(xué)生問卷調(diào)查,制成統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖表中提供的信息回答下列問題:
學(xué)習(xí)時(shí)間(h) | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 |
人數(shù) | 72 | 36 | 54 | 18 |
(1)初三年級(jí)共有學(xué)生_____人.
(2)在表格中的空格處填上相應(yīng)的數(shù)字.
(3)表格中所提供的學(xué)生學(xué)習(xí)時(shí)間的中位數(shù)是_____,眾數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PAB=∠PBC,則線段CP長的最小值為( )
A.
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是直線y=x與反比例函數(shù)y= (k>0,x>0)的交點(diǎn),B是y= 圖象上的另一點(diǎn),BC//x軸,交y軸于點(diǎn)C.動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運(yùn)動(dòng),終點(diǎn)為C,過點(diǎn)P作PM⊥x軸,PN⊥y軸,垂足分別為M,N.設(shè)四邊形OMPN的面積為S,P點(diǎn)運(yùn)動(dòng)時(shí)間為t,則S關(guān)于t的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△AB′C′是由Rt△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到的,連接CC′交斜邊于點(diǎn)E,CC′的延長線交BB′于點(diǎn)F.
(1)證明:△ACE∽△FBE;
(2)設(shè)∠ABC=α,∠CAC′=β,試探索α、β滿足什么關(guān)系時(shí),△ACE與△FBE是全等三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲列車速度是60km/h,乙列車速度是90km/h.
(1)兩列車都從某地出發(fā),目的地距離出發(fā)點(diǎn)1000km,甲列車先走2小時(shí),問乙列車什么時(shí)候能追上甲列車?追上時(shí)離目的地還有多遠(yuǎn)?
(2)甲列車從A地開往B地,乙列車同時(shí)從B地開往A地,已知A,B兩地相距200km,兩車相遇的地方離A地多遠(yuǎn)?(用方程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com