【題目】如圖,已知是邊長為的正方形,是邊上的一個動點,連接,的延長線交的延長線于點,連接.作的外接圓.設=,=.
(1)求與之間的函數(shù)關系式;
(2)若是的切線,求的值;
(3)過點________作________________,垂足為________,交________于點________,直線________交________于點________(如圖).若________=,則________的值是________.
【答案】(1);(2);(3)
【解析】
(1)證明,利用相似比得到,然后變形有;
(2)連接,如圖,根據(jù)圓周角定理得是的直徑,再利用切線的性質(zhì)得,接著證明,利用相似比得到,即=,與聯(lián)立可求出的值;
與的交點為,連結(jié),如圖,在中利用勾股定理計算出=,再利用面積法計算出,接著在中利用勾股定理計算出,則可得到,根據(jù)圓周角定理得到=,于是得到.
解:(1)∵四邊形是正方形,
∴,
∴=,=,
∴,
∴,即
∴;
(2)連接,如圖,
∵=,
∴是的直徑,
∵是的切線,
∴,
∴=,
∵=,=,
∴=,
∵=,
∴=,
∴=,
∵=,
∴,
∴,即,
∴=,
∵,
∴=,
由于,則方程化為=,解得=,=(舍去),
∴的值為;
(3)與的交點為,連結(jié),如圖,
∵=,
∴為的直徑,
在中,
∵==,=,
∴,
∵,
∴,
在中,∵,,
∴,
∴,
∵=,
∴.
故答案為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點在線段上,在的同側(cè)作等腰和等腰,與、分別交于點、.對于下列結(jié)論:
①;②;③.其中正確的是( )
A. ①②③ B. ① C. ①② D. ②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解市民對全市創(chuàng)文工作的滿意程度,某中學數(shù)學興趣小組在全市甲、乙兩個區(qū)內(nèi)進行了調(diào)查統(tǒng)計,將調(diào)查結(jié)果分為不滿意,一般,滿意,非常滿意四類,回收、整理好全部問卷后,得到下列不完整的統(tǒng)計圖.
請結(jié)合圖中信息,解決下列問題:
(1)求此次調(diào)查中接受調(diào)查的人數(shù).
(2)求此次調(diào)查中結(jié)果為非常滿意的人數(shù).
(3)興趣小組準備從調(diào)查結(jié)果為不滿意的4位市民中隨機選擇2位進行回訪,已知4位市民中有2位來自甲區(qū),另2位來自乙區(qū),請用列表或用畫樹狀圖的方法求出選擇的市民均來自甲區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(m,m),點B的坐標為(n,﹣n),拋物線經(jīng)過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點C.已知實數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.
(1)求拋物線的解析式;
(2)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側(cè)),連接OD、BD.
①當△OPC為等腰三角形時,求點P的坐標;
②求△BOD 面積的最大值,并寫出此時點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正確的結(jié)論有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與軸交于點,與直線交于點,點的坐標為
(1)求直線的解析式;
(2)直線與軸交于點,若點是直線上一動點(不與點重合),當與相似時,求點的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是中國傳統(tǒng)數(shù)學最重要的著作,在“勾股”章中有這樣一個問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?”
用今天的話說,大意是:如圖,是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門位于的中點,南門位于的中點,出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點在直線上)?請你計算的長為__________步.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對某一個函數(shù)給出如下定義:如果存在常數(shù),對于任意的函數(shù)值,都滿足≤,那么稱這個函數(shù)是有上界函數(shù);在所有滿足條件的中,其最小值稱為這個函數(shù)的上確界.例如,函數(shù), ≤2,因此是有上界函數(shù),其上確界是2.如果函數(shù)(≤x≤, <)的上確界是,且這個函數(shù)的最小值不超過2,則的取值范圍是( )
A. ≤ B. C. ≤ D. ≤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).
(1)根據(jù)上述數(shù)學模型計算:
①喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?
②當=5時,y=45.求k的值.
(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學模型,假設某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com