【題目】如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是12,則k=( )
A. 6 B. 9 C. D.
科目:初中數(shù)學 來源: 題型:
【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關系.
(發(fā)現(xiàn)證明)小聰把△ABE繞點A逆時針旋轉90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結論.
(類比引申)如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足 關系時,仍有EF=BE+FD.
(探究應用)如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,∠EAF=75°且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結果取整數(shù),參考數(shù)據:≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖7,已知平行四邊形ABCD的周長是32cm,AB︰BC=5︰3,AE⊥BC,垂足為E,AF⊥CD,垂足為F,∠EAF=2∠C.
(1)求∠C的度數(shù);
(2)已知DF的長是關于的方程--6=0的一個根,求該方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖8,在平面直角坐標系中,點A坐標為(0,3),點B(,)是以OA為直徑的⊙M上的一點,且tan∠AOB=,BH⊥軸,H為垂足,點C(,).
(1)求H點的坐標;
(2)求直線BC的解析式;
(3)直線BC是否與⊙M相切?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點A(2,1).
(1)分別求出這兩個函數(shù)的解析式;
(2)當x取什么范圍時,反比例函數(shù)值大于0;
(3)若一次函數(shù)與反比例函數(shù)另一交點為B,且縱坐標為﹣4,當x取什么范圍時,反比例函數(shù)值大于一次函數(shù)的值;
(4)試判斷點P(﹣1,5)關于x軸的對稱點P′是否在一次函數(shù)y=kx+m的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國古代有著輝煌的數(shù)學成就,《周牌算經》、《九章算術》、《海島算經》、《孫子算經》等是我國古代數(shù)學的重要文獻.
(1)小聰想從這4部數(shù)學名著中隨機選擇1部閱讀,求他選中《九章算術》的概率;
(2)小聰擬從這4部數(shù)學名著中選擇2部作為假課外拓展學習內容,用列表或樹狀圖求選中的名著恰好是《九章算術》和《周牌算經》的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反比例函數(shù)(a>0,a為常數(shù))和在第一象限內的圖象如圖所示,點M在的圖象上,MC丄x軸于點C,交的圖象于點A,MD丄y軸于點D,交的圖象于點B,當點M在的圖象上運動時,以下結論:
①S△CDB=S△CCA
②四邊形OAMB的面積為2-a
③當a=l時,點A是MC的中點
④若S四邊形OAMB+S△CDB,則四邊形OCMD為正方形.其中正確是________(把所有正確結論的序號寫在橫線上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)填在相應的大括號里
,,,,,,,,,,
正數(shù)集合{ …}
非負整數(shù)集合{ …}
負分數(shù)集合{ …}
有理數(shù)集合{ …}.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com