【題目】綿陽農(nóng)科所為了考察某種水稻穗長的分布情況,在一塊試驗田里隨機(jī)抽取了50個谷穗作為樣本,量得它們的長度(單位:cm).對樣本數(shù)據(jù)適當(dāng)分組后,列出了如下頻數(shù)分布表:

穗長

4.5≤x5

5≤x5.5

5.5≤x6

6≤x6.5

6.5≤x7

7≤x7.5

頻數(shù)

4

8

12

13

10

3

1)在圖1、圖2中分別出頻數(shù)分布直方圖和頻數(shù)折線圖;

2)請你對這塊試驗田里的水稻穗長進(jìn)行分析;并計算出這塊試驗田里穗長在5.5≤x7范圍內(nèi)的谷穗所占的百分比.

1 2

【答案】1)略

270%

【解析】

1

2)由(1)可知谷穗長度大部分落在5 cm7 cm之間,其它區(qū)域較少.長度在6≤x6.5范圍內(nèi)的谷穗個數(shù)最多,有13個,而長度在4.5≤x5,7≤x7.5范圍內(nèi)的谷穗個數(shù)很少,總共只有7個.

這塊試驗田里穗長在5.5≤x7范圍內(nèi)的谷穗所占百分比為(12 + 13 + 10÷ 50 = 70%

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是定線段OA上的動點,點P從O點出發(fā),沿線段OA運動至點A后,再立即按原路返回至點O停止,點P在運動過程中速度大小不變,以點O為圓心,線段OP長為半徑作圓,則該圓的周長l與點P的運動時間t之間的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結(jié)論: ①∠EBG=45°; ②△DEF∽△ABG;
③SABG=SFGH; ④AG+DF=FG.
其中正確的是 . (填寫正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳環(huán)保,綠色出行的概念得到廣大群眾的接受,越來越多的人喜歡選擇騎自行車作為出行工具.小軍和爸爸同時騎車去圖書館,爸爸先以150/分的速度騎行一段時間,休息了5分鐘,再以m/分的速度到達(dá)圖書館.小軍始終以同一速度騎行,兩人騎行的路程為y()與時間x(分鐘)的關(guān)系如圖.請結(jié)合圖象,解答下列問題:

(1)填空:a=________;b=________;m=________.

(2)若小軍的速度是 120 /分,求小軍第二次與爸爸相遇時距圖書館的距離.

(3)(2)的條件下,爸爸自第二次出發(fā)后,騎行一段時間后與小軍相距100 米,此時 小軍騎行的時間為________分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P在雙曲線y= 上,以P為圓心的⊙P與兩坐標(biāo)軸都相切,E為y軸負(fù)半軸上的一點,PF⊥PE交x軸于點F,則OF﹣OE的值是(
A.6
B.5
C.4
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是菱形ABCD對角線CA的延長線上任意一點,以線段AE為邊作一個菱形AEFG,連接EB,GD.且∠DAB=∠EAG
(1)求證:EB=GD;
(2)若∠DAB=60°,AB=2,AG= ,求GD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖①,在ABDCAE中,BD=AE,DBA=EAC,AB=AC,易證:ABD≌△CAE.(不需要證明)

特例探究:如圖②,在等邊ABC中,點DE分別在邊BC、AB上,且BD=AE,ADCE交于點F.求證:ABD≌△CAE

歸納證明:如圖③,在等邊ABC中,點DE分別在邊CB、BA的延長線上,且BD=AEABDCAE是否全等?如果全等,請證明;如果不全等,請說明理由.

拓展應(yīng)用:如圖④,在等腰三角形中,AB=AC,點OAB邊的垂直平分線與AC的交點,點D、E分別在OB、BA的延長線上.若BD=AEBAC=50°,AEC=32°,求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:(a≠0),即a的負(fù)P次冪等于ap次冪的倒數(shù).例:

(1)計算:__;__;

(2)如果,那么p=__;如果,那么a=__;

(3)如果,且a、p為整數(shù),求滿足條件的a、p的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:EAOB的平分線上一點,ECOB,EDOA,C、D是垂足,連接CD,交OE于點F

(1)求證:OD=OC;

(2)若AOB=60°,求證:OE=4EF

查看答案和解析>>

同步練習(xí)冊答案