【題目】已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點(diǎn)D.
(1)如圖①,當(dāng)直線l與⊙O相切于點(diǎn)C時(shí),求證:AC平分∠DAB;
(2)如圖②,當(dāng)直線l與⊙O相交于點(diǎn)E,F(xiàn)時(shí),求證:∠DAE=∠BAF.
【答案】
(1)證明:連接OC,
∵直線l與⊙O相切于點(diǎn)C,
∴OC⊥CD;
又∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠ACO;
又∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB
(2)證明:如圖②,連接BF,
∵AB是⊙O的直徑,
∴∠AFB=90°,
∴∠BAF=90°﹣∠B,
∴∠AEF=∠ADE+∠DAE,
在⊙O中,四邊形ABFE是圓的內(nèi)接四邊形,
∴∠AEF+∠B=180°,
∴∠BAF=∠DAE
【解析】(1)連接OC,易得OC∥AD,根據(jù)平行線的性質(zhì)就可以得到∠DAC=∠ACO,再根據(jù)OA=OC得到∠ACO=∠CAO,就可以證出結(jié)論;(2)如圖②,連接BF,由AB是⊙O的直徑,根據(jù)直徑所對(duì)的圓周角是直角,可得∠AFB=90°,由三角形外角的性質(zhì),可求得∠AEF的度數(shù),又由圓的內(nèi)接四邊形的性質(zhì),繼而證得結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為BC的中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM,DN分別與邊AB,AC交于E,F兩點(diǎn),下列結(jié)論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結(jié)論是( )
A. ①②④ B. ②③④
C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠DAB=∠CAE,要使△ABC∽△ADE,則補(bǔ)充的一個(gè)條件可以是(注:只需寫出一個(gè)正確答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形 ABCD 中, AB = a, BC = b, a > b .以 AB 邊為軸將長方形旋轉(zhuǎn)一周形成 圓柱體甲,再以 BC 邊為軸將長方形旋轉(zhuǎn)一周形成圓柱體乙.記兩個(gè)圓柱體的體積分別為 V甲 ,V乙 ,側(cè)面積分別為 S甲, S乙 ,則下列正確的是( )
A. V甲 > V乙 , S甲=S乙
B. V甲 < V乙 , S甲= S乙
C. V甲= V乙 , S甲= S乙
D. V甲 > V乙 , S甲 < S乙
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一種牛奶軟包裝盒如圖1所示.為了生產(chǎn)這種包裝盒,需要先畫出展開圖紙樣.
(1)如圖2給出三種紙樣甲.乙.丙,在甲.乙.丙中,正確的有________.
(2)從已知正確的紙樣中選出一種,在原圖上標(biāo)注上尺寸.
(3)利用你所選的一種紙樣,求出包裝盒的側(cè)面積和表面積(側(cè)面積與兩個(gè)底面積的和)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,OA=2,OB=4,以A點(diǎn)為頂點(diǎn)、AB為腰在第三象限作等腰Rt△ABC.
(1)求C點(diǎn)的坐標(biāo);
(2)如圖②,OA=2,P為y軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)P點(diǎn)在y軸負(fù)半軸向下運(yùn)動(dòng)時(shí),以P為頂點(diǎn),PA為腰作等腰Rt△APD,過D作DE⊥x軸于E點(diǎn),求OP-DE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)G在弧BD上,連接AG,交CD于點(diǎn)K,過點(diǎn)G的直線交CD延長線于點(diǎn)E,交AB延長線于點(diǎn)F,且EG=EK.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為13,CH=12,AC∥EF,求OH和FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知?jiǎng)狱c(diǎn)P在函數(shù)(x>0)的圖象上運(yùn)動(dòng),PM⊥x軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,線段PM、PN分別與直線AB:y=﹣x+1交于點(diǎn)E,F,則AFBE的值為( 。
A. 4 B. 2 C. 1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將斜邊長為4的直角三角板放在直角坐標(biāo)系xOy中,兩條直角邊分別與坐標(biāo)軸重合,P為斜邊的中點(diǎn).現(xiàn)將此三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°后點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)是( )
A.( ,1)
B.(1,﹣ )
C.(2 ,﹣2)
D.(2,﹣2 )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com