【題目】如圖,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°

(1)求∠GFC的度數(shù)
(2)求證:DM∥BC.

【答案】
(1)解:∵BD⊥AC,EF⊥AC,

∴BD∥EF,

∴∠EFG=∠1=35°,

∴∠GFC=90°+35°=125°


(2)證明:∵BD∥EF,

∴∠2=∠CBD,

∴∠1=∠CBD,

∴GF∥BC,

∵∠AMD=∠AGF,

∴MD∥GF,

∴DM∥BC


【解析】(1)由BD⊥AC,EF⊥AC,得到BD∥EF,根據(jù)平行線的性質得到∠EFG=∠1=35°,再根據(jù)角的和差關系可求∠GFC的度數(shù);(2)根據(jù)平行線的性質得到∠2=∠CBD,等量代換得到∠1=∠CBD,根據(jù)平行線的判定定理得到GF∥BC,證得MD∥GF,根據(jù)平行線的性質即可得到結論.
【考點精析】掌握平行線的判定是解答本題的根本,需要知道同位角相等,兩直線平行;內(nèi)錯角相等,兩直線平行;同旁內(nèi)角互補,兩直線平行.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AC、BD交于點M,過B、D兩點分別作AC的垂線段BFDE,AB=CD.

1)若∠A=C,求證FM=EM

2)若FM=EM,則∠A=C.是真命題嗎?(直接判斷,不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(-a3)2·(-a2)3________,10m1×10n1________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC,C=90°,且AB=AD,連接BD,過點A作BD的垂線,交BC于E,若EC=3cm,CD=4cm,則梯形ABCD的面積是_________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需( 。
A.(a+b)元
B.(3a+2b)元
C.(2a+3b)元
D.5(a+b)元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年國慶小長假,泰安市旅游再次交出漂亮成績單,全市納入重點監(jiān)測的21個旅游景區(qū)、旅游大項目、鄉(xiāng)村旅游點實現(xiàn)旅游收入近132000000元,將132000000用科學記數(shù)法表示為( 。

A. 1.32×109B. 1.32×108C. 1.32×107D. 1.32×106

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,ABC中,AC=BC,以BC為直徑的O交AB于E,過點E作EGAC于G,交BC的延長線于F.

(1)求證:AE=BE;

(2)求證:FE是O的切線;

(3)若FE=4,F(xiàn)C=2,求O的半徑及CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形是矩形,點的坐標分別為, .點是線段上的動點(與端點不重合).過點作直線交折線于點.當點在線段上時,若矩形關于直線的對稱圖形為四邊形,試探究與矩形的重疊部分的面積是否發(fā)生變化?若不變,求出該重疊部分的面積;若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系內(nèi),與點P(﹣3,2)關于原點對稱的點的坐標是(
A.(3,﹣2)
B.(2,3)
C.(2,﹣3)
D.(﹣3,﹣2)

查看答案和解析>>

同步練習冊答案