精英家教網 > 初中數學 > 題目詳情

【題目】已知二次函數y=ax2+bx+c的圖象如圖,則一次函數y=ax+c的圖象大致是( )

A.
B.
C.
D.

【答案】A
【解析】∵拋物線開口向上,與y軸交于正半軸,

∴a>0,c>0,

∴一次函數y=ax+c的圖象經過第一、二、三象限.

所以答案是:A.

【考點精析】掌握一次函數的圖象和性質和二次函數的性質是解答本題的根本,需要知道一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,△ABC 的三個頂點的位置如圖所示,點 A的坐標是(-2,2),現(xiàn)將△ABC 平移,使點 A 變換為點 A,點 B、C分別是 B、C 的對應點.

(1) 請畫出平移后的△ABC′(不寫畫法),并直接寫出點B、C的坐標:B 、C

(2) 若△ABC 內部一點 P 的坐標為(,),則點 P 的對應點 P的坐標是 ;

(3) 連接 AB,CC,并求四邊形 ABCC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一輛汽車行駛時的耗油量為0.1/千米,如圖是油箱剩余油量(升)關于加滿油后已行駛的路程(千米)的函數圖象.

(1)根據圖象,直接寫出汽車行駛400千米時,油箱內的剩余油量,并計算加滿油時油箱的油量;

(2)求關于的函數關系式,并計算該汽車在剩余油量5升時,已行駛的路程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,E點為DF上的點,BAC上的點,∠1=∠2,∠C=∠D

試說明:AC∥DF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2016雙十一期間,某快遞公司計劃租用甲、乙兩種車輛快遞貨物,從貨物量來計算:若租用兩種車輛合運,10天可以完成任務;若單獨租用乙種車輛,完成任務的天數是單獨租用甲種車輛完成任務天數的2倍.

(1)求甲、乙兩種車輛單獨完成任務分別需要多少天?

(2)已知租用甲、乙兩種車輛合運需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨租甲種車輛、單獨租乙種車輛這三種租車方案中,哪一種租金最少?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學在全校學生中開展了“地球﹣我們的家園”為主題的環(huán)保征文比賽,評選出一、二、三等獎和優(yōu)秀獎,根據獎項的情況繪制成如圖所示的兩幅不完整的統(tǒng)計圖,請你根據圖中提供的信息解答下列問題:

(1)該校獲獎的總人數為 , 并把條形統(tǒng)計圖補充完整;
(2)求在扇形統(tǒng)計圖中表示“二等獎”的扇形的圓心角的度數;
(3)獲得一等獎的4名學生中有3男1女,現(xiàn)打算從中隨機選出2名學生參加頒獎活動,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,矩形ABCD的兩條邊在坐標軸上,點D與坐標原點O重合,且AD=8,AB=6.如圖2,矩形ABCD沿OB方向以每秒1個單位長度的速度運動,同時點P從A點出發(fā)也以每秒1個單位長度的速度沿矩形ABCD的邊AB經過點B向點C運動,當點P到達點C時,矩形ABCD和點P同時停止運動,設點P的運動時間為t秒.

(1)當t=5時,請直接寫出點D,點P的坐標;
(2)當點P在線段AB或線段BC上運動時,求出△PBD的面積S關于t的函數關系式,并寫出相應t的取值范圍;
(3)點P在線段AB或線段BC上運動時,作PE⊥x軸,垂足為點E,當△PEO與△BCD相似時,求出相應的t值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程或不等式組解應用題:

為進一步改善某市旅游景區(qū)公共服務設施,市政府預算用資金30萬元在二百余家A級景區(qū)配備兩種輪椅800臺,其中普通輪椅每臺350元,輕便型輪椅每臺450

(1) 如果預算資金恰好全部用完,那么能購買兩種輪椅各多少臺?

(2) 由于獲得了不超過5萬元的社會捐助,那么輕便型輪椅最多可以買多少臺?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖, 是⊙ 的直徑, 、 為⊙ 上位于 異側的兩點,連接 并延長至點 ,使得 ,連接 交⊙ 于點 ,連接 、 、 .

(1)證明: ;
(2)若 ,求 的度數;
(3)設 于點 ,若 的中點,求 的值.

查看答案和解析>>

同步練習冊答案