兩圓半徑之比為2:3,小圓外切正六邊形與大圓內(nèi)接正六邊形面積之比為( 。
A.2:3B.4:9C.16:27D.4:3
3
如圖,設(shè)⊙I的半徑為2x,⊙O的半徑為3x,
作IH⊥MN于H,連結(jié)IM、IN、OA、OB,
∴MH=NH,
∵∠MIN=60°,
∴∠MIH=30°,
∴MH=
3
3
IH=
2
3
3
x,
∴MN=
4
3
3
x,
∴正六邊形MNPQKL的面積=6•
1
2
4
3
3
x•2x=8
3
x2,
∵∠AOB=60°,
∴S△OAB=
3
4
•(3x)2=
9
3
4
x2,
∴正六邊形ABCDEF的面積=6•
9
3
4
x2=
27
3
2
x2,
∴正六邊形MNPQKL的面積:正六邊形ABCDEF的面積=8
3
x2
27
3
2
x2=16:27.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O是正六邊形ABCDEF的外接圓,⊙O的半徑是2,則正六邊形ABCDEF的面積為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①有一個(gè)寶塔,他的地基邊緣是周長(zhǎng)為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心.(下列各題結(jié)果精確到0.1m)
(1)求地基的中心到邊緣的距離;
(2)己知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問(wèn)塑像底座的半徑最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖的平面直角坐標(biāo)系中有一個(gè)正六邊形ABCDEF,其中C、D的坐標(biāo)分別為(1,0)和(2,0).若在無(wú)滑動(dòng)的情況下,將這個(gè)六邊形沿著x軸向右滾動(dòng),則在滾動(dòng)過(guò)程中,這個(gè)六邊形的頂點(diǎn)A、B、C、D、E、F中,會(huì)過(guò)點(diǎn)(45,2)的是點(diǎn)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

同一個(gè)圓的內(nèi)接正方形與內(nèi)接正六邊形邊長(zhǎng)之比為( 。
A.2:3B.
3
2
C.
2
:2
D.
2
:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,A是弧BD的中點(diǎn),過(guò)A點(diǎn)的切線與CB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:AB•DA=CD•BE;
(2)若點(diǎn)E在CB延長(zhǎng)線上運(yùn)動(dòng),點(diǎn)A在弧BD上運(yùn)動(dòng),使切線EA變?yōu)楦罹EFA,其它條件不變,問(wèn)具備什么條件使原結(jié)論成立?(要求畫(huà)出示意圖,注明條件,不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,MN是⊙O的直徑,若∠A=10°,∠PMQ=40°,以PM為邊作圓的內(nèi)接正多邊形,則這個(gè)正多邊形是______邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,九(1)班同學(xué)要做一個(gè)展板,該展板的上沿是圓弧形,這條弧所在圓的半徑為1.8m,所對(duì)的圓心角為100°,則弧長(zhǎng)是______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

畫(huà)一個(gè)半徑為2cm的正六邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案