【題目】如圖,在3×3的方格中,點(diǎn)A、B、C、D、E、F都是格點(diǎn),從A、D、E、F四點(diǎn)中任意取一點(diǎn),以所取點(diǎn)及B、C為頂點(diǎn)畫三角形,所畫三角形是直角三角形的概率是( )
A.
B.
C.
D.
【答案】C
【解析】解:∵A、B、C;D、B、C;E、B、C三種取法三點(diǎn)可組成直角三角形,
∴從A、D、E、F四點(diǎn)中任意取一點(diǎn),以所取點(diǎn)及B、C為頂點(diǎn)畫三角形是直角三角形的概率= .
所以答案是:C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的逆定理和列表法與樹狀圖法的相關(guān)知識可以得到問題的答案,需要掌握如果三角形的三邊長a、b、c有下面關(guān)系:a2+b2=c2,那么這個三角形是直角三角形;當(dāng)一次試驗(yàn)要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,⊿ABC的頂點(diǎn)在格點(diǎn)上。 且A(1,-4),B(5,-4),C(4,-1)
【1】畫出⊿ABC;
【1】求出⊿ABC 的面積;
【1】若把⊿ABC向上平移2個單位長度,再向左平移4個單位長度得到⊿BC,在圖中畫出⊿BC,并寫出B的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O與直線 相離,圓心 到直線 的距離 , ,將直線 繞點(diǎn) 逆時針旋轉(zhuǎn) 后得到的直線 剛好與⊙O相切于點(diǎn) ,則⊙O的半徑= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個性化學(xué)習(xí)需求,某校就“學(xué)生對知識拓展、體育特長、藝術(shù)特長和時間活動四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整),請根據(jù)圖中信息,解答下列問題.
(1)求扇形統(tǒng)計圖中的m的值,并補(bǔ)全條形統(tǒng)計圖;
(2)已知該校800名學(xué)生,計劃開設(shè)“實(shí)踐活動類”課程,每班安排20人,問學(xué)校開設(shè)多少個“實(shí)踐活動課”課程的班級比較合理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,矩形 的邊 在 軸上,頂點(diǎn) 在拋物線 上,且拋物線交 軸于另一點(diǎn) .
(1)則 = , =;
(2)已知 為 邊上一個動點(diǎn)(不與 、 重合),連結(jié) 交 于點(diǎn) ,過點(diǎn) 作 軸的平行線分別交拋物線、直線 于 、 .
①求線段 的最大值,此時 的面積為;
②若以點(diǎn) 為圓心, 為半徑作⊙O,試判斷直線 與⊙O的能否相切,若能請求出 點(diǎn)坐標(biāo),若不能請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某園藝公司對一塊直角三角形的花圃進(jìn)行改造,測得兩直角邊長為6m、8m.現(xiàn)要將其擴(kuò)建成等腰三角形,且擴(kuò)充部分是以8m為直角邊的直角三角形.求擴(kuò)建后的等腰三角形花圃的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2.證明:∠DGA+∠BAC=180°.請完成說明過程.
解:∵EF∥AD,(已知)
∴∠2=∠3.( )
又∵∠1=∠2(已知)
∴∠1=∠3,(等量代換)
∴AB∥ ,( )
∴∠DGA+∠BAC=180°.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的兩條弦AC,BD相交于點(diǎn)E,∠A=70o , ∠C=50o , 那么sin∠AEB的值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com