【題目】在“書香八桂,閱讀圓夢”讀書活動中,某中學(xué)設(shè)置了書法、國學(xué)誦讀、演講、征文四個比賽項目(每人只參加一個項目),九(2)班全班同學(xué)都參加了比賽,該班班長為了了解本班同學(xué)參加各項比賽的情況,收集整理數(shù)據(jù)后,繪制以下不完整的折線統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2),根據(jù)圖表中的信息解答下列各題:
(1)請求出九(2)全班人數(shù);
(2)請把折線統(tǒng)計圖補充完整;
(3)南南和寧寧參加了比賽,請用“列表法”或“畫樹狀圖法”求出他們參加的比賽項目相同的概率.

【答案】
(1)解:∵演講人數(shù)12人,占25%,

∴出九(2)全班人數(shù)為:12÷25%=48(人);


(2)解:∵國學(xué)誦讀占50%,

∴國學(xué)誦讀人數(shù)為:48×50%=24(人),

∴書法人數(shù)為:48﹣24﹣12﹣6=6(人);

補全折線統(tǒng)計圖;


(3)解:分別用A,B,C,D表示書法、國學(xué)誦讀、演講、征文,

畫樹狀圖得:


【解析】∵共有16種等可能的結(jié)果,他們參加的比賽項目相同的有4種情況, ∴他們參加的比賽項目相同的概率為: =
(1)由演講人數(shù)12人,占25%,即可求得九(2)全班人數(shù);(2)首先求得書法與國學(xué)誦讀人數(shù),繼而補全折線統(tǒng)計圖;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與他們參加的比賽項目相同的情況,再利用概率公式求解即可求得答案.
【考點精析】關(guān)于本題考查的扇形統(tǒng)計圖和折線統(tǒng)計圖,需要了解能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地反映事物的變化情況,但是不能清楚地表示出在總體中所占的百分比才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年3月28日是全國中小學(xué)生安全教育日,某學(xué)校為加強學(xué)生的安全意識,組織了全校1500名學(xué)生參加安全知識競賽,從中抽取了部分學(xué)生成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計.請根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖,解答下列問題: 頻率分布表

分數(shù)段

頻數(shù)

頻率

50.5﹣60.5

16

0.08

60.5﹣70.5

40

0.2

70.5﹣80.5

50

0.25

80.5﹣90.5

m

0.35

90.5﹣100.5

24

n


(1)這次抽取了名學(xué)生的競賽成績進行統(tǒng)計,其中:m= , n=
(2)補全頻數(shù)分布直方圖;
(3)若成績在70分以下(含70分)的學(xué)生為安全意識不強,有待進一步加強安全教育,則該校安全意識不強的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:|﹣ |+ ﹣4sin45°﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當前,“校園手機”現(xiàn)象已經(jīng)受到社會廣泛關(guān)注,某數(shù)學(xué)興趣小組對“是否贊成中學(xué)生帶手機進校園”的問題進行了社會調(diào)查.小文將調(diào)查數(shù)據(jù)作出如下不完整的整理: 頻數(shù)分布表

看法

頻數(shù)

頻率

贊成

5

無所謂

0.1

反對

40

0.8


(1)請求出共調(diào)查了多少人;并把小文整理的圖表補充完整;
(2)小麗要將調(diào)查數(shù)據(jù)繪制成扇形統(tǒng)計圖,則扇形圖中“贊成”的圓心角是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個直三棱柱的立體圖和主視圖、俯視圖,根據(jù)立體圖上的尺寸標注,它的左視圖的面積為(
A.24
B.30
C.18
D.14.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,OA=5,AB=4,點D為邊AB上一點,將△BCD沿直線CD折疊,使點B恰好落在邊OA上的點E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標系.

(1)求OE的長及經(jīng)過O,D,C三點拋物線的解析式;
(2)一動點P從點C出發(fā),沿CB以每秒2個單位長度的速度向點B運動,同時動點Q從E點出發(fā),沿EC以每秒1個單位長度的速度向點C運動,當點P到達點B時,兩點同時停止運動,設(shè)運動時間為t秒,當t為何值時,DP=DQ;
(3)若點N在(1)中拋物線的對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使M,N,C,E為頂點的四邊形是平行四邊形?若存在,請求出M點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,直線CD切⊙O于點D,AM⊥CD于點M,BN⊥CD于N.
(1)求證:∠ADC=∠ABD;
(2)求證:AD2=AMAB;
(3)若AM= ,sin∠ABD= ,求線段BN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AF于M,N.下列結(jié)論:①AF⊥BG;②BN= NF;③ = ;④S四邊形CGNF= S四邊形ANGD . 其中正確的結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=4,點A在⊙O上,∠AMN=30°,B為 的中點,P是直徑MN上一動點.

(1)利用尺規(guī)作圖,確定當PA+PB最小時P點的位置(不寫作法,但要保留作圖痕跡).
(2)求PA+PB的最小值.

查看答案和解析>>

同步練習(xí)冊答案