【題目】如圖,EF過ABCD對角線的交點O,交AD于E,交BC于F,若ABCD的周長為18,OE=1.5,則四邊形EFCD的周長為(
A.14
B.13
C.12
D.10

【答案】C
【解析】解:∵四邊形ABCD是平行四邊形,周長為18, ∴AB=CD,BC=AD,OA=OC,AD∥BC,
∴CD+AD=9,∠OAE=∠OCF,
在△AEO和△CFO中, ,
∴△AEO≌△CFO(ASA),
∴OE=OF=1.5,AE=CF,
則EFCD的周長=ED+CD+CF+EF=(DE+CF)+CD+EF=AD+CD+EF=9+3=12.
故選C.
【考點精析】認真審題,首先需要了解平行四邊形的性質(zhì)(平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E、F分別是對角線BD上的兩點,且BE=DF,連接AE、AF、CE、CF.四邊形AECF是什么樣的四邊形,說明你的道理.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O1、⊙O2相內(nèi)切于點A,其半徑分別是8和4,將⊙O2沿直線O1O2平移至兩圓相外切時,則點O2移動的長度是(
A.4
B.8
C.16
D.8或16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(3,0),以A為圓心作⊙A與Y軸切于原點,與x軸的另一個交點為B,過B作⊙A的切線l.
(1)以直線l為對稱軸的拋物線過點A及點C(0,9),求此拋物線的解析式;
(2)拋物線與x軸的另一個交點為D,過D作⊙A的切線DE,E為切點,求此切線長;
(3)點F是切線DE上的一個動點,當△BFD與△EAD相似時,求出BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀對學生的成長有著深遠的影響,某中學為了解學生每周課余閱讀的時間,在本校隨機抽取了若干名學生進行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計圖表.

組別

時間(小時)

頻數(shù)(人數(shù))

頻率

A

0≤t≤0.5

6

0.15

B

0.5≤t≤1

a

0.3

C

1≤t≤1.5

10

0.25

D

1.5≤t≤2

8

b

E

2≤t≤2.5

4

0.1

合計

1

請根據(jù)圖表中的信息,解答下列問題:

(1)表中的a= , b= , 中位數(shù)落在組,將頻數(shù)分布直方圖補全;
(2)估計該校2000名學生中,每周課余閱讀時間不足0.5小時的學生大約有多少名?
(3)E組的4人中,有1名男生和3名女生,該校計劃在E組學生中隨機選出兩人向全校同學作讀書心得報告,請用畫樹狀圖或列表法求抽取的兩名學生剛好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標分別是(﹣4,6),(﹣1,4).

(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標系;
(2)請畫出△ABC關(guān)于x軸對稱的△A1B1C1
(3)請在y軸上求作一點P,使△PB1C的周長最小,并寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,飛機在一定高度上沿水平直線飛行,先在點A處測得正前方小島C的俯角為30°,面向小島方向繼續(xù)飛行10km到達B處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為45°,如果小島高度忽略不計,求飛機飛行的高度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=﹣2x+m的圖象經(jīng)過點P(﹣2,3),且與x軸、y軸分別交于點A、B,則△AOB的面積是( )
A.
B.
C.4
D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都經(jīng)過原點,頂點分別為A,B,與x軸的另一交點分別為M,N,如果點A與點B,點M與點N都關(guān)于原點O成中心對稱,則稱拋物線C1和C2為姐妹拋物線,請你寫出一對姐妹拋物線C1和C2 , 使四邊形ANBM恰好是矩形,你所寫的一對拋物線解析式是

查看答案和解析>>

同步練習冊答案