如圖,在平面直角坐標系xOy中,拋物線的頂點為A,與y軸的交點為B,連結AB,AC⊥AB,交y軸于點C,延長CA到點D,使AD=AC,連結BD.作AE∥x軸,DE∥y軸.

(1)當m=2時,求點B的坐標;
(2)求DE的長?
(3)①設點D的坐標為(x,y),求y關于x的函數(shù)關系式?②過點D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個交點為P,當m為何值時,以,A,B,D,P為頂點的四邊形是平行四邊形?

解:(1)當m=2時,
把x=0代入,得:y=2,
∴點B的坐標為(0,2)。
(2)延長EA,交y軸于點F,

∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,
∴△AFC≌△AED(AAS)!郃F=AE。
∵點A(m,),點B(0,m),
∴AF=AE=|m|,,
∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,
∴△ABF∽△DAE,∴,即:。∴DE=4。
(3)①∵點A的坐標為(m,),∴點D的坐標為(2m,)。
∴x=2m,y=,
∴y=
∴所求函數(shù)的解析式為:y=。
②作PQ⊥DE于點Q,則△DPQ≌△BAF,
(Ⅰ)當四邊形ABDP為平行四邊形時(如圖1),

點P的橫坐標為3m,
點P的縱坐標為:,
把P(3m,)代入y=得:
。
解得:m=0(此時A,B,D,P在同一直線上,舍去)或m=8。
(Ⅱ)當四邊形ABDP為平行四邊形時(如圖2),

點P的橫坐標為m,
點P的縱坐標為:
把P(m,)代入得:

解得:m=0(此時A,B,D,P在同一直線上,舍去)或m=﹣8。
綜上所述:m的值為8或﹣8。

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

某公司投資新建了一商場,共有商鋪30間.據(jù)預測,當每間的年租金定為10萬元時,可全部租出.每間的年租金每增加5000元,少租出商鋪1間.(假設年租金的增加額均為5000元的整數(shù)倍)該公司要為租出的商鋪每間每年交各種費用2萬元,未租出的商鋪每間每年交各種費用1萬元.
(1)當每間商鋪的年租金定為12萬元時,能租出多少間?年收益多少萬元?
(2)當每間商鋪的年租金定為多少萬元時,該公司的年收益最大,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,曲線是函數(shù)在第一象限內(nèi)的圖象,拋物線是函數(shù)的圖象.點)在曲線上,且都是整數(shù).

(1)求出所有的點;
(2)在中任取兩點作直線,求所有不同直線的條數(shù);
(3)從(2)的所有直線中任取一條直線,求所取直線與拋物線有公共點的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點,B點的坐標為(3,0),與y軸交于點C(0,-3),點P是直線BC下方拋物線上的一個動點.

(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形.是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標;若不存在,請說明理由;
(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1,已知拋物線C經(jīng)過原點,對稱軸與拋物線相交于第三象限的點M,與x軸相交于點N,且。

(1)求拋物線C的解析式;
(2)將拋物線C繞原點O旋轉(zhuǎn)1800得到拋物線,拋物線與x軸的另一交點為A,B為拋物線上橫坐標為2的點。
①若P為線段AB上一動點,PD⊥y軸于點D,求△APD面積的最大值;
②過線段OA上的兩點E、F分別作x軸的垂線,交折線O-B-A于E1、F1,再分別以線段EE1、FF1為邊作如圖2所示的等邊△AE1E2、等邊△AF1F2,點E以每秒1個長度單位的速度從點O向點A運動,點F以每秒1個長度單位的速度從點A向點O運動,當△AE1E2有一邊與△AF1F2的某一邊在同一直線上時,求時間t的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線與坐標軸分別交于點A、B,與直線y=x交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當點P、Q其中一點停止運動時,另一點也停止運動.分別過點P、Q作x軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點P、Q重合除外).

(1)求點P運動的速度是多少?
(2)當t為多少秒時,矩形PEFQ為正方形?
(3)當t為多少秒時,矩形PEFQ的面積S最大?并求出最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)
過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封
閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2<0)的頂點.

(1)求A、B兩點的坐標;
(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;
(3)當△BDM為直角三角形時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知拋物線y=ax2+bx+3與x軸交于A、B兩點,過點A的直線l與拋物線交于點C,其中A點的坐標是(1,0),C點坐標是(4,3).

(1)求拋物線的解析式;
(2)在(1)中拋物線的對稱軸上是否存在點D,使△BCD的周長最?若存在,求出點D的坐標,若不存在,請說明理由;
(3)若點E是(1)中拋物線上的一個動點,且位于直線AC的下方,試求△ACE的最大面積及E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在表格中:

銷售單價(元)
x
銷售量y(件)
    
銷售玩具獲得利潤w(元)
    
(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應定為多少元.
(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?

查看答案和解析>>

同步練習冊答案