如圖,已知矩形ABCD在直線l的上方,BC在直線l上,AB=a,AD=b(a、b為常數(shù)),E是BC上的一動點(不含端點B、C),以AE為邊在直線l的上方作矩形AEFG,使頂點G恰好落在射線CD上.
(1)求證:△ADG∽△ABE;
(2)過F作FH⊥l,求證:△ADG≌△EHF;
(3)連接FC,判斷當(dāng)點E由B向C運動時,∠FCH的大小是否總保持不變?若∠FCH的大小不變,請用含a、b的代數(shù)式表示tan∠FCH的值;若∠FCH的大小發(fā)生改變,請舉例說明.

【答案】分析:(1)由于AB⊥BC,AD⊥CG,且∠DAG+∠DAE=∠BAE+∠DAE=90°,則∠DAG=∠BAE,由此△ADG∽△ABE得證.
(2)由∠2=∠3,AG=EF可證得Rt△ADG≌Rt△EHF(ASA).
(3)∠FCH的大小總保持不變,由△EHF∽△ABE可得tan∠FCH=
解答:(1)證明:
∵G在射線CD上,∴∠ADG=∠ABE=90°.
又∵∠1=90°-∠EAD,∠2=90°-∠EAD,
∴∠1=∠2,
∴△ADG∽△ABE.

(2)證明:∵矩形ABCD和矩形AEFG中,∠1、∠3都與∠AEB互余,
∴∠1=∠3,又∵∠1=∠2,∴∠2=∠3.
∠ADG=∠EHF=90°,AG=EF.
∴△ADG≌△EFH(AAS).

(3)解:∠FCH的大小總保持不變.
在Rt△FEH中,tan∠FCH=
而由(2)知EH=AD=BC,∴CH=BE,
又由(1)、(2)可得知△EHF∽△ABE,
∴在Rt△FEH中,tan∠FCH====
點評:本題考查了相似三角形的判定與性質(zhì),綜合性較強,有一定的難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形DEFG內(nèi)接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,則矩形的邊長DG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點M沿AB方向從A向B以2cm/秒的速度移動,點N從D沿DA方向以1c精英家教網(wǎng)m/秒的速度移動,如果M、N兩點同時出發(fā),移動的時間為x秒(0≤x≤6).
(1)當(dāng)x為何值時,△MAN為等腰直角三角形?
(2)當(dāng)x為何值時,有△MAN∽△ABC?
(3)愛動腦筋的小紅同學(xué)在完成了以上聯(lián)系后,對該問題作了深入的研究,她認為:在M、N的移動過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點的四邊形面積是一個常數(shù).她的這種想法對嗎?請說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正三角形ABC的邊長AB是480毫米.一質(zhì)點D從點B出發(fā),沿BA方向,以每秒鐘10毫米的速度向精英家教網(wǎng)點A運動.
(1)建立合適的直角坐標系,用運動時間t(秒)表示點D的坐標;
(2)過點D在三角形ABC的內(nèi)部作一個矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點D,使矩形DEFG是正方形(要求所表達的方式能體現(xiàn)出找點D的過程);
(3)過點D、B、C作平行四邊形,當(dāng)t為何值時,由點C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時點F的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧德質(zhì)檢)如圖,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜邊AC平均分成n段,以每段為對角線作邊與AB、BC平行的小矩形,則這些小矩形的面積和是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點A、C交y軸于點E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點A、B,且頂點G在直線y=mx+n上,拋物線與y軸交于點F.
(1)點A的坐標為
(-3n,0)
(-3n,0)
;B的坐標
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

同步練習(xí)冊答案