【題目】已知二次函數(shù)y=x2+bx+c(b,c為常數(shù)).
(1)當b=2,c=﹣3時,求二次函數(shù)圖象的頂點坐標;
(2)當c=10時,若在函數(shù)值y=1的情況下,只有一個自變量x的值與其對應(yīng),求此時二次函數(shù)的解析式;
(3)當c=b2時,若在自變量x的值滿足b≤x≤b+3的情況下,與其對應(yīng)的函數(shù)值y的最小值為21,求此時二次函數(shù)的解析式.
【答案】(1)頂點坐標為(-1,-4);(2)二次函數(shù)的解析式y(tǒng)=x2+6x+10,y=x2﹣6x+10;(3)二次函數(shù)的解析式為y=x2+x+7或y=x2﹣4x+16.
【解析】試題分析:(1)把b=2,c=﹣3代入函數(shù)解析式,通過變形為頂點式即可得頂點坐標;
(2)根據(jù)當c=10時,若在函數(shù)值y=l的情況下,只有一個自變量x的值與其對應(yīng),得到x2+bx+5=1有兩個相等是實數(shù)根,求此時二次函數(shù)的解析式;
(3)當c=b2時,寫出解析式,分三種情況進行討論即可.
試題解析:(1)當b=2,c=﹣3時,二次函數(shù)的解析式為y=x2+2x﹣3=(x+1)2﹣4,
∴頂點坐標為(-1,-4);
(2)當c=10時,二次函數(shù)的解析式為y=x2+bx+10,
由題意得,x2+bx+10=1有兩個相等是實數(shù)根,
∴△=b2﹣36=0,
解得b1=6,b2=﹣6,
∴二次函數(shù)的解析式y(tǒng)=x2+6x+10,y=x2﹣6x+10;
(3)當c=b2時,二次函數(shù)解析式為y═x2+bx+b2,
圖象開口向上,對稱軸為直線x=﹣ ,
①當﹣<b,即b>0時,
在自變量x的值滿足b≤x≤b+3的情況下,y隨x的增大而增大,
∴當x=b時,y=b2+bb+b2=3b2為最小值,
∴3b2=21,解得b1=﹣ (舍去),b2=;
②當b≤﹣≤b+3時,即﹣2≤b≤0,
∴x=﹣,y=b2為最小值,
∴b2=21,解得b1=﹣2(舍去),b2=2(舍去);
③當﹣>b+3,即b<﹣2,
在自變量x的值滿足b≤x≤b+3的情況下,y隨x的增大而減小,
故當x=b+3時,y=(b+3)2+b(b+3)+b2=3b2+9b+9為最小值,
∴3b2+9b+9=21.解得b1=1(舍去),b2=﹣4;
∴b=時,解析式為:y=x2+x+7
b=﹣4時,解析式為:y=x2﹣4x+16.
綜上可得,此時二次函數(shù)的解析式為y=x2+x+7或y=x2﹣4x+16.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)完一次函數(shù)后,小榮遇到過這樣的一個新穎的函數(shù):y=|x﹣1|,小榮根據(jù)學(xué)校函數(shù)的經(jīng)驗,對函數(shù)y=|x﹣1|的圖象與性質(zhì)進行了探究.下面是小榮的探究過程,請補充完成:
(1)列表:下表是y與x的幾組對應(yīng)值,請補充完整.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 4 | 2 | 1 | … |
(2)描點連線:在平面直角坐標系xOy中,請描出以上表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;
(3)進一步探究發(fā)現(xiàn),該函數(shù)圖象的最低點的坐標是(1,0),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其他性質(zhì)(一條即可): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一粒芝麻約有0.000002千克,0.000002用科學(xué)記數(shù)學(xué)法表示為( )千克.
A.2×10﹣4
B.0.2×10﹣5
C.2×10﹣7
D.2×10﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)y= (k≠0)在第一象限的圖象交于A(1,n)和B兩點.
(1)求反比例函數(shù)的解析式與點B坐標;
(2)求△AOB的面積;
(3)在第一象限內(nèi),當一次函數(shù)y=﹣x+5的值小于反比例函數(shù)y= (k≠0)的值時,寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在A,B兩地之間有汽車站C站,客車由A地駛往C站,貨車由B地駛往A地.兩車同時出發(fā),勻速行駛.圖2是客車、貨車離C站的路程y1 , y2(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系圖象.
(1)填空:A,B兩地相距千米;
(2)求兩小時后,貨車離C站的路程y2與行駛時間x之間的函數(shù)關(guān)系式;
(3)客、貨兩車何時相遇?相遇處離C站的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,第一象限內(nèi)長方形ABCD,AB∥y軸,點A(1,1),點C(a,b),滿足 +|b﹣3|=0.
(1)求長方形ABCD的面積.
(2)如圖2,長方形ABCD以每秒1個單位長度的速度向右平移,同時點E從原點O出發(fā)沿x軸以每秒2個單位長度的速度向右運動,設(shè)運動時間為t秒.
①當t=4時,直接寫出三角形OAC的面積為 ;
②若AC∥ED,求t的值;
(3)在平面直角坐標系中,對于點P(x,y),我們把點P′(﹣y+1,x+1)叫做點P的伴隨點,已知點A1的伴隨點為A2,點A2的伴隨點為A3,點A3的伴隨點為A4,…,這樣依次得到點A1,A2,A3,…,An.
①若點A1的坐標為(3,1),則點A3的坐標為 ,點A2014的坐標為 ;
②若點A1的坐標為(a,b),對于任意的正整數(shù)n,點An均在x軸上方,則a,b應(yīng)滿足的條件為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com