精英家教網 > 初中數學 > 題目詳情

【題目】如圖,四邊形ABCD中,ADBC,∠B=90°,EAB上一點,分別以EDEC為折痕將兩個角(∠A,∠B)向內折起,點AB恰好落在CD邊上的點F處,若AD=2,BC=6,則EF的值是( 。

A. 2 B. C. D. 2

【答案】A

【解析】

如圖首先運用翻折變換的性質求出CFDF的長度,證明∠DEC=90°;進一步證明△EFD∽△CFE,由相似三角形對應邊成比例即可求出EF的長度

如圖,由翻折變換的性質得

CFCB=6,DFDA=2,∠EFC=∠B=90°;

AED=∠FED,∠BEC=∠FEC,∴∠DEC180°=90°∵∠EDC+∠DCE=90°,∠EDC+∠DEF=90°,∴∠DEF=∠DCE,∵∠EFD=∠CFE=90°,∴△EFD∽△CFE,∴EF:CF=DF:EF,∴EF2=DFFC=2×6=12,∴EF=2

故選A.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在封閉圖形ABCD中,ADBC,且AD=4,三角形ABC的周長為14,將三角形ABC平移到三角形DEF的位置.

(1)指出平移的方向和平移的距離;

(2)求封閉圖形ABFD的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OEAB,OFCD.

(1)OC恰好是∠AOE的平分線,則OA是∠COF的平分線嗎?請說明理由;

(2)若∠EOF5BOD,求∠COE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校七年級共有500名學生,在世界讀書日前夕,開展了閱讀助我成長的讀書活動.為了解該年級學生在此次活動中課外閱讀情況,童威隨機抽取m名學生,調查他們課外閱讀書籍的數量,將收集的數據整理成如下統(tǒng)計表和扇形圖.

學生讀書數量統(tǒng)計表

閱讀量/

學生人數

1

15

2

a

3

b

4

5

(1)直接寫出m、a、b的值;

(2)估計該年級全體學生在這次活動中課外閱讀書籍的總量大約是多少本?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一次課題學習中,老師讓同學們合作編題.某學習小組受趙爽弦圖的啟發(fā),編寫了下面這道題,請你來解一解.
如圖,將矩形ABCD的四邊BA、CB、DC、AD分別延長至E、F、G、H,使得AE=CG,BF=DH,連結EF、FG、GH、HE.

(1)求證:四邊形EFGH為平行四邊形;
(2)若矩形ABCD是邊長為1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.

(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°,
①若AB=CD=1,AB//CD,求對角線BD的長.
②若AC⊥BD,求證:AD=CD.
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點P是對角線BD上一點,且BP=2PD,過點P作直線分別交邊AD,BC于點E,F,使四邊形ABFE是等腰直角四邊形.求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖示,AB∥CD,且點E在射線ABCD之間,請說明∠AEC=∠A+∠C的理由.

(2)現在如圖b示,仍有AB∥CD,但點EABCD的上方,請嘗試探索∠1,∠2,∠E三者的數量關系. ②請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE把∠BOD分成兩部分;

(1)直接寫出圖中∠AOC的對頂角為   ,∠BOE的鄰補角為   ;

(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩人周末從同一地點出發(fā)去某景點,因乙臨時有事,甲坐地鐵先出發(fā),甲出發(fā)0.2小時后乙開汽車前往.設甲行駛的時間為x(h),甲、乙兩人行駛的路程分別為y1(km)與y2(km).如圖①是y1與y2關于x的函數圖象.
(1)分別求線段OA與線段BC所表示的y1與y2關于x的函數表達式;
(2)當x為多少時,兩人相距6km?
(3)設兩人相距S千米,在圖②所給的直角坐標系中畫出S關于x的函數圖象.

查看答案和解析>>

同步練習冊答案