如圖,點(diǎn)P是菱形ABCD的對(duì)角線(xiàn)BD上一點(diǎn),連接CP并延長(zhǎng),交AD于E,交BA的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)找出圖中與全等的三角形,并說(shuō)明理由;
(2)猜想三條線(xiàn)段PC、PE、PF之間的比例關(guān)系,并說(shuō)明理由.

【答案】分析:(1)根據(jù)菱形的性質(zhì)得∠ADP=∠CDP,DA=DC,從而得到△APD與△CPD全等.
(2)根據(jù)菱形的對(duì)邊互相平行得∠DCF=∠F,再根據(jù)(1)題的結(jié)論得到∠DCP=∠DAP,從而證得△PAE∽△PFA,然后利用比例線(xiàn)段證得等積式即可.
解答:解:(1)∵四邊形ABCD為菱形,
∴∠ADP=∠CDP,DC=DA,
∴△APD≌△CPD(SAS);

(2)∵四邊形ABCD為菱形,
∴∠DCF=∠F,
∵△APD≌△CPD,
∴∠DCP=∠DAP,
∴∠F=∠PAE,
∴△PAE∽△PFA,
,
即:PA2=PE•PF,
∵P是菱形ABCD的對(duì)角線(xiàn)BD上一點(diǎn),
∴PA=PC,
∴PC2=PE•PF.
點(diǎn)評(píng):本題考查了菱形的性質(zhì)、全等三角形的判定及相似三角形的判定及性質(zhì),求解第二問(wèn)關(guān)鍵是證明△PAE∽△PFA,是一道不錯(cuò)的綜合題,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)F是菱形ABDC對(duì)角線(xiàn)BC上一動(dòng)點(diǎn),EF∥AB,GF∥AC,菱形兩條對(duì)角線(xiàn)BC和AD的長(zhǎng)分別為2cm、5cm,當(dāng)點(diǎn)F在BC上移動(dòng)時(shí),陰影面積會(huì)改變嗎?如果不變,請(qǐng)求出陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P是菱形ABCD的對(duì)角線(xiàn)BD上一點(diǎn),連接CP并延長(zhǎng),交AD于E,交BA的延精英家教網(wǎng)長(zhǎng)線(xiàn)于F.
(1)求證:∠DCP=∠DAP;
(2)若AB=2,DP:PB=1:2,且PA⊥BF,求對(duì)角線(xiàn)BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蘇州)如圖,點(diǎn)P是菱形ABCD對(duì)角線(xiàn)AC上的一點(diǎn),連接DP并延長(zhǎng)DP交邊AB于點(diǎn)E,連接BP并延長(zhǎng)交邊AD于點(diǎn)F,交CD的延長(zhǎng)線(xiàn)于點(diǎn)G.
(1)求證:△APB≌△APD;
(2)已知DF:FA=1:2,設(shè)線(xiàn)段DP的長(zhǎng)為x,線(xiàn)段PF的長(zhǎng)為y.
①求y與x的函數(shù)關(guān)系式;
②當(dāng)x=6時(shí),求線(xiàn)段FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆湖北省襄陽(yáng)市襄州區(qū)中考適應(yīng)性考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,點(diǎn)P是菱形ABCD對(duì)角線(xiàn)BD上一點(diǎn),連接CP并延長(zhǎng)交AD于點(diǎn)E,交BA的延長(zhǎng)線(xiàn)于點(diǎn)F.

(1)求證:∠DCP=∠DAP;
(2)若AB=2,DP∶PB=1∶2,且PA⊥BF,求對(duì)角線(xiàn)BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省襄陽(yáng)市襄州區(qū)中考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,點(diǎn)P是菱形ABCD對(duì)角線(xiàn)BD上一點(diǎn),連接CP并延長(zhǎng)交AD于點(diǎn)E,交BA的延長(zhǎng)線(xiàn)于點(diǎn)F.

(1)求證:∠DCP=∠DAP;

(2)若AB=2,DP∶PB=1∶2,且PA⊥BF,求對(duì)角線(xiàn)BD的長(zhǎng).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案