精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠B=90°,AD=1,BC=8,AB=6,點P在高AB上滑動,當AP長為
 
時,△DAP與△PBC相似.
分析:當△DAP與△PBC相似,根據(jù)相似三角形的對應邊的比相等可以求出,但應分當
AP
BP
=
AD
BC
AP
BC
=
AD
BP
兩種情況進行討論.
解答:解:設AP=x,則BP=6-x,
∵AD∥BC,∠B=90°,
∴∠A=90°.
∴∠A=∠B.
(1)當
AP
BP
=
AD
BC
時,△APD∽△BPC,
x
6-x
=
1
8
,x=
2
3
;
(2)當
AP
BC
=
AD
BP
時,△APD∽△BCP,
x
8
=
1
6-x
,x=2,或x=4.
∴所求的AP長為
2
3
,2,或4.
點評:本題考查對相似三角形性質的理解,相似三角形的對應邊的比相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點E是AB邊上一點,AE=BC,DE⊥EC,取DC的中點F,連接AF、BF.
(1)求證:AD=BE;
(2)試判斷△ABF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點E是直角梯形ABCD內(nèi)一點,且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)延長FE交BC于點G,點G恰好是BC的中點,若AB=6,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求證:BC=CD;
(2)在邊AB上找點E,連接CE,將△BCE繞點C順時針方向旋轉90°得到△DCF.連接EF,如果EF∥BC,試畫出符合條件的大致圖形,并求出AE:EB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點E是直角梯形ABCD內(nèi)一點,且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)若EF=6,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點,AD=3cm,BC=5cm.求⊙O的面積.

查看答案和解析>>

同步練習冊答案